(国网辽宁省电力有限公司检修分公司辽宁锦州121000)
摘要:近年来,智能变电站二次系统的配置及应用问题得到了业内的广泛关注,研究其相关课题有着重要意义。本文首先介绍了智能变电站优点,对智能变电站与常规变电站的二次设备做了比较分析,并结合相关实践经验,分别从多个角度与方面就智能变电站二次系统的优化方案展开了研究,阐述了个人对此的几点看法与认识,望有助于相关工作的实践。
关键词:智能变电站;二次系统;配置;应用
1前言
作为智能变电站实际应用中的一项重要方面,对其二次系统配置及应用的探讨占据着极为关键的地位。该项课题的研究,将会更好地提升对智能变电站二次系统的分析与掌控力度,从而通过合理化的措施与途径,进一步优化其在实际应用中的最终整体效果。
2智能变电站优点
2.1互操作性
以前的变电站设备必须严格按照设备的规格、使用方法来确定变电站的产量,一旦设备损坏时,等待新设备的时期较长,这段时期变电站只能被迫停止运营,给人们的生活、生产带来极大的不便。但现在的变电站取消了大量规约转换器呵呵保护管理机等设备,使不同商家的设备都能够直接安装在变电站内,简化了变电站的结构,提高了系统的可靠性和可维修性。
2.2简化系统集成
各电站都使用IEC61850定义的运算语言来构建、维护模型,各个设备商家之间的工具也可以互相操作,简化了系统集成,缩短了调试时间。
2.3一次设备的优化
变电站内部使用向外进行数字通信的智能断路器等设备,也在配电装置的智能控制柜中安装智能终端来实现信号的数字转换。因为大量电子式互感器的使用和在网内的运营,变电站对外直接的提供了数字式光线以此作为接口。
2.4设备的精简
以前大量的铜芯控制电缆,渐渐被少量的光线所替代,实现了二次回路的网络化、数字化,优化了变电站的整个布置。加上智能一次设备的使用更加减少了电缆的数量,也减少了继电器室屏位的数量,优化了变电站内部的设备配置,利用环保和节能的进行。
3智能变电站与常规变电站的二次设备比较
3.1过程层设备的应用
合并单元、智能终端等智能组件的引入实现了就地采样信号和分合闸命令数字化。合并单元接收常规互感器输出的模拟信号,经同步和合并之后对外提供采样值数据,同时满足保护、测控、录波、计量设备使用。间隔层保护测控设备的分合闸命令通过GOOSE网络下发,智能终端挂在过程层网上接收命令,实现对断路器、刀闸、主变等一次设备的控制、测量等功能。
220kV及主变各侧为满足继电保护双重化配置要求,合并单元双套配置,除220kV母线设备和主变本体智能终端单套配置外,其余均双套配置。110kV侧根据《智能变电站110kV保护测控装置集成技术要求(试行)》的要求,110kV采用合并单元智能终端合一装置,除主变间隔和母线设备外均单套配置,同时两个装置合一可以把“直采直跳”的点对点SV和GOOSE通信口进行合并,减少间隔层装置和过程层的通信端口,使间隔层的装置设计更加紧凑。
3.2保护采样、跳闸方式的转变
为了满足继电保护装置对电流电压量采样以及保护出口跳闸的可靠性及实时性的要求,同时出于降低工程造价的目的,智能变电站保护采样和跳闸均采用“直采直跳”。考虑到全站保护装置均为就地下放布置,故SV采用点对点方式,220kV及110kVGOOSE为独立组双星形网方式。目前随着保护就地化推广及优势展现,出现了不少关于220kV分布式母差保护的研究,基于FPGA(现场可编程门阵列)的媒体访问控制(MAC)核仿真技术,利用新型具有延时明确和等间隔数据交换的过程层数据交换装置,SV采样由于延时明确可不依赖外部对时,220kV母线保护实现“网采网跳”,在满足保护可靠性要求的前提下简化220kV过程层网络。在保证跳闸动作可靠性的前提下,网采网跳可以发挥更大的作用。
4智能变电站二次系统的优化方案
4.1线路主保护方案的优化
基于固有频率的长距离输电线路保护方案是一种暂态量保护方案,其依据是故障后高频分量中的周期性分量发生后在输电线路上传播,并在短路点和电源阻抗之间来回反射形成的,在频率上表现为固有频率的谐波形式。该保护方案的故障信息容易提取,对采样率要求较低,不受系统运行方式、过渡电阻、故障时刻、故障点位置的影响,具有如下优点:一是动作速度优于现有的工频量保护;二是相较于行波保护,该方案不受故障时刻影响,不需要准确捕捉行波波头,不受母线出线数目的影响;三是两端数据无需同时采样。因此对于智能变电站二次系统而言,可以在完全同步的情况下,主保护采取采样值光纤差动,基于固有频率的保护作为辅助。
4.2变压器主保护方案的优化
变压器主保护采用不同励磁涌流识别原理的差动保护和瓦斯保护作为主保护,而长期的运行经验表明差动保护是能灵敏地区分区内和区外故障的。比率制动式差动保护,既能在外部短路时有可靠的制动作用,又能在内部短路时有较高的灵敏度。该保护最关键也是最困难的问题是防止变压器励磁涌流导致的差动保护误动作和提高空投于故障变压器(特别是匝间短路)时保护的灵敏度。研究表明:励磁涌流中含有较大的偶次谐波分量,并且二次谐波分量最大,而故障电流中二次谐波分量较小。
因此对于智能变电站二次系统而言,变压器主保护优化方案为:一套有励磁涌流识别的差动保护为主,基于广义功率的差动保护为辅的双重电气量主保护系统,同时瓦斯保护仍然作为电气量主保护保留。
4.3母线保护方案的优化
作为电力系统中的枢纽元件,母线如果发生故障而又得不到及时切除,那将会给电力系统的供电可靠性造成严重影响。母线主保护常采用分相式快速虚拟比相式电流突变量保护和比率制动式电流差动保护原理。快速虚拟比相式电流突变量保护仅在故障开始时投入,然后改用比率制动式电流差动保护。两种原理保护均设有大差启动元件、小差选择元件和电压闭锁元件。母线主保护的处理方式有以下两种:一是集中式保护。集中式处理的母线保护将母线视为一个主设备,在母线的智能单元内实现母线的保护,具体方法为:母线所有连接元件电流和隔离开关辅助接点以及开关的跳闸接点信息都要引入智能单元的保护模块内,保护模块执行保护算法,故障判断和处理。二是分布式保护。分布式母线保护是将传统的一套母差保护装置的功能通过多台处理单元完成。每一个单元手机母线所连一个元件的电流信息,不同单元之间通过光纤通信网络实现数据共享,从而实现母线保护原理。
4.4后备保护方案的优化
目前电网中的后备保护包括过流保护、距离保护、零序保护、断路器失灵保护和复合电压闭锁过流保护,随着电网结构的日益复杂,这些后备保护方案的缺点日益凸显。
相较于传统的后备保护方案,广域后备保护具有如下功能:自适应跟踪系统运行方式、自适应投退相关保护功能、在线自适应定值整定计算、自适应调整保护定值和保护范围、潮流转移的识别和高级应用智能甩负荷为电气扰动提供快速甩负荷。因此对于智能变电站二次系统而言,后备保护方案可以优先广域后备保护。
5结束语
综上所述,加强对智能变电站二次系统配置及应用问题的研究分析,对于其良好实践效果的取得有着十分重要的意义,因此在今后的智能变电站二次系统配置过程中,应该加强对其关键环节与重点要素的重视程度,并注重其具体实施措施与方法的科学性。
参考文献:
[1]陈文升,唐宏德.数字化变电站关键技术研究与工程实现[J].华东电力.2016(10):60-62.
[2]包红旗.HGIS与数字化变电站[M].中国电力出版社.2017(01):115-116.
[3]丁书文,史志鸿.数字化变电站的几个关键技术问题[J].继电器.2016(09):88-89.