还原碳化机理论文-陈丽杰,谢中华,王瑞祥,田磊,聂华平

还原碳化机理论文-陈丽杰,谢中华,王瑞祥,田磊,聂华平

导读:本文包含了还原碳化机理论文开题报告文献综述及选题提纲参考文献,主要关键词:氧化钨,氢还原,碳化机理,W粉

还原碳化机理论文文献综述

陈丽杰,谢中华,王瑞祥,田磊,聂华平[1](2018)在《氧化钨粉还原碳化机理分析及超细碳化钨粉的制备》一文中研究指出以碳化过程和碳化机理分析为基础,以蓝钨(WO_(2.9))和紫钨(WO_(2.72))为原料,研究了碳化温度、碳化时间和W粉粒度对制取WC粉粒度的影响。试验结果表明,以WO_(2.72)为原料时,所制备的粉末粒度均小于以WO_(2.9)为原料所制备的粉末粒度,故以WO_(2.72)为还原碳化制备超细WC粉的原料为最优选择。在W粉粒度为0.2~0.3μm,碳化温度为1 350℃,碳化时间为10min/舟的条件下,最终得到WC粉粒度为0.4~0.5μm,完全符合超细WC粉末标准。(本文来源于《稀有金属与硬质合金》期刊2018年02期)

苟海鹏[2](2017)在《攀枝花钛铁矿碳热还原过程中碳化钛、碳氮化钛生成机理及其复合材料研究》一文中研究指出我国攀枝花地区蕴藏着储量丰富的钒钛磁铁矿,其中钛储量约占我国钛资源的90%,每年通过选矿过程得到的攀枝花钛铁矿精矿约有30万吨。随着高品质金红石资源的日渐枯竭,利用钛铁矿制备富钛料作为一种替代金红石的原材料受到越来越多的重视。碳化钛和碳氮化钛属于NaCl型面心立方结构,具有高熔点、高硬度、耐磨、耐腐蚀的特点,同时还具有良好的导热性、导电性和化学稳定性,被广泛地应用于耐磨材料、切削工具、锂离子电池阳极等。结合资源储量、环境保护和经济效益等因素,利用攀枝花钛铁矿生产碳化钛、碳氮化钛及其复合材料已经受到越来越多研究者的关注。虽然国内外对于利用钛铁矿碳热还原制备碳化钛和碳氮化钛已有大量研究,但对碳热还原过程中的物相转变、动力学分析以及反应机理还存在很大争议。此外,相较于国外或者国内其他产地的钛铁矿资源,攀枝花钛铁矿富含大量的Mg、Si、Al、Ca和Mn等杂质元素,还原产物中杂质物相的组成、形貌和分布尚不清楚,如何除去这些杂质物相从而提高还原产物纯度还有待于进一步研究。因此,本文利用Factsage热力学软件、X射线衍射技术、扫描电子显微镜、红外气体分析仪和真空控制系统等对攀枝花钛铁矿碳热还原过程中碳化钛、碳氮化钛生成机理及其复合材料研究中的若干问题进行了探究:研究了不同碳配比、反应温度、反应时间和预氧化处理对生成碳化钛和碳氮化钛过程中物相转变、动力学、反应机理和杂质物相组成的影响;研究真空碳热还原钛铁矿的反应机理;真空碳热还原钛铁矿制备Fe-TiC复合粉体和Fe-TiC复合陶瓷。取得的研究成果如下:1)在氩气气氛下,当反应温度为1200~1500℃时,钛铁矿碳热还原过程中的物相变化规律为:FeTO_3→Fe+Ti_3O_5→Ti_2O_3→TiC_(1-x)O_x→TiC,其中还原产物TiC_(1-x)O_x的最低生成温度为1300℃。随着反应温度的提高和反应时间的延长,还原产物中的Fe相会形成连续相,包裹住碳化钛颗粒和杂质物相(主要由MgO、MgAl_2O_4和Mg_2SiO_4组成)。在氮气气氛下,当反应温度为1200~1500℃时,钛铁矿还原氮化过程中的物相变化规律为:FeTiO_3→Fe+Ti_3O_5 → TiC_(1-x)O_x → TiC_(1-x)N_x,其中TiC_(1-x)O_x和TiC1-xNx的最低生成温度均为1300℃,还原产物中并未发现Ti_2O_3相。在空气气氛下,经过800℃预氧化处理后,钛铁矿转变为Fe_2O_3、TiO_2和Fe_2Ti_3O_9;经过1000℃预氧化处理后,钛铁矿转变为Fe_2O_3、TiO_2和Fe_2TiO_5。虽然预氧化处理并不会改变后续还原过程中的物相转变,但钛铁矿与氧气反应破坏了钛铁矿原有的致密结构,增加了其比表面积,降低了碳热还原反应活化能,还原产物TiC_(1-x)O_x物相的最低生成温度由1300℃降低为1200℃。2)在钛铁矿碳热还原过程中提出了固液反应机理。当反应温度高于1300℃时,钛铁矿在还原初期被快速还原成Fe和TiO_2,固态碳颗粒溶于还原产物Fe中形成液相。由于Fe-C液滴具有良好的流动性,液滴之间会相互聚集在一起形成连续液相包裹住未被还原的低价钛氧化物,形成的液相层会将固态碳颗粒和低价钛氧化物隔绝开,铁液成为固态碳颗粒扩散到未反应核表面的主要传输通道。尽管Fe相中碳的溶解量并不高,但是有大量的活性炭在液相层外侧,随着液相中的碳参与还原反应,外侧的固态碳颗粒会源源不断地溶解进液相中,最终将低价钛氧化物还原为TiC颗粒。3)在真空碳热还原钛铁矿过程中,钛铁矿中的杂质元素Mg、Ca和Mn可以以气态形式从还原产物中分离除去。提高反应温度或真空度,碳热还原产物中的杂质元素Mg、Ca和Mn的含量明显降低。在真空条件下,当反应温度高于1400C时,还原产物中杂质物相MgO、MgAl_2O_4和Mg_2SiO_4消失。真空碳热还原后,还原产物中的杂质元素Si和A1溶于Fe相中。4)真空烧结Fe-TiC复合粉体制备复合陶瓷的过程中,由于烧结真空度高于还原真空度,部分Fe以气态形式挥发,陶瓷基体Fe相中Fe的含量降低。同时,Fe相中的Al元素在烧结过程中生成Al_4C_3,TiC相中的部分Ti元素溶于Fe相中,导致Fe相中A1元素含量降低而Ti元素含量升高。在10Pa条件下,当活性炭与钛铁矿质量比为0.391、反应温度为1500℃、反应时间为4h时,得到Fe-TiC复合粉体中杂质含量较少。酸浸Fe-TiC复合粉体后,得到了颗粒大小约为4μm、形貌为立方体的TiC粉末,其中Si、Fe、Al、Ca和 Mg 的含量分别为 4.53wt%、0.15wt%、0.12wt%、0.089wt%和 0.0088wt%。在0.002Pa条件下,利用该复合粉体在1400℃烧结6h制得的复合陶瓷性能最好,其密度为5.3 g·cm-3、抗弯强度为508.82MPa、维氏硬度为949.9HV。抗弯强度测试中,裂痕穿过TiC晶体并未出现在TiC相与Fe相的界面。(本文来源于《北京科技大学》期刊2017-04-10)

叶楠,唐建成,吴爱华,魏晓枭[3](2017)在《碳氢协同还原-碳化法制备纳米WC粉的工艺及机理》一文中研究指出针对传统还原-碳化工艺中WC粉颗粒长大的问题,采用碳氢协同还原-碳化法制备纳米级球形WC粉,研究了前驱体配碳比和反应温度对WC粉性能的影响。结果表明,WC粉的碳含量与前驱体的配碳比密切相关,最佳配碳比(即n(C)/n(W)值)为3.6。W转变为WC具有结构遗传性,WC粉的平均粒径与还原温度和碳化温度密切相关。随着还原温度由680℃升高至800℃,还原水蒸气与碳反应生成CO和H_2,显着降低体系中水蒸气的分压,从而抑制中间产物W颗粒的挥发-沉积长大,WC粉的平均粒径随还原温度升高而减小。碳化过程中的高温促进WC颗粒的晶界迁移和纳米W颗粒之间的烧结合并长大,WC粉的平均粒径随碳化温度的升高而增大。n(C)/n(W)为3.6的前驱体粉末经800℃还原和1100℃碳化后,得到平均粒径为87.3 nm的球形WC粉。(本文来源于《稀有金属材料与工程》期刊2017年01期)

靳广洲,赵如松,罗运强,高俊斌,孙桂大[4](2008)在《氧化钼在CH_4/H_2气氛中还原碳化机理研究》一文中研究指出采用TG-DTA技术研究了MoO3在CH4/H2气氛中的还原碳化行为,考察了程序升温速率和还原碳化终点温度对氧化钼还原碳化行为的影响,并探索适宜的还原碳化条件。结果表明,在1℃/min的程序升温条件下,MoO3在CH4/H2气氛中经叁段失重过程被还原碳化为Mo2C,相应的反应历程为MoO3→MoO2→MoOxCy→Mo2C,适宜的还原碳化终点温度为675℃;程序升温速率升至2℃/min以上时,MoO3在CH4/H2气氛中的反应历程为MoO3→MoO2→Mo+MoOxCy→Mo2C,且随程序升温速率的增大,第二段失重过程中金属Mo的生成量增大,还原碳化反应的始、终点温度升高。提高还原碳化终点温度,MoO3在CH4/H2气氛中的还原碳化反应规律相同,但过高的还原碳化温度会引起有机烃类分解生炭反应的发生,沉积在催化剂的表面,导致制备的碳化钼催化剂表面积炭增多,比表面积降低,从而引起催化活性的下降。(本文来源于《燃料化学学报》期刊2008年06期)

还原碳化机理论文开题报告

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

我国攀枝花地区蕴藏着储量丰富的钒钛磁铁矿,其中钛储量约占我国钛资源的90%,每年通过选矿过程得到的攀枝花钛铁矿精矿约有30万吨。随着高品质金红石资源的日渐枯竭,利用钛铁矿制备富钛料作为一种替代金红石的原材料受到越来越多的重视。碳化钛和碳氮化钛属于NaCl型面心立方结构,具有高熔点、高硬度、耐磨、耐腐蚀的特点,同时还具有良好的导热性、导电性和化学稳定性,被广泛地应用于耐磨材料、切削工具、锂离子电池阳极等。结合资源储量、环境保护和经济效益等因素,利用攀枝花钛铁矿生产碳化钛、碳氮化钛及其复合材料已经受到越来越多研究者的关注。虽然国内外对于利用钛铁矿碳热还原制备碳化钛和碳氮化钛已有大量研究,但对碳热还原过程中的物相转变、动力学分析以及反应机理还存在很大争议。此外,相较于国外或者国内其他产地的钛铁矿资源,攀枝花钛铁矿富含大量的Mg、Si、Al、Ca和Mn等杂质元素,还原产物中杂质物相的组成、形貌和分布尚不清楚,如何除去这些杂质物相从而提高还原产物纯度还有待于进一步研究。因此,本文利用Factsage热力学软件、X射线衍射技术、扫描电子显微镜、红外气体分析仪和真空控制系统等对攀枝花钛铁矿碳热还原过程中碳化钛、碳氮化钛生成机理及其复合材料研究中的若干问题进行了探究:研究了不同碳配比、反应温度、反应时间和预氧化处理对生成碳化钛和碳氮化钛过程中物相转变、动力学、反应机理和杂质物相组成的影响;研究真空碳热还原钛铁矿的反应机理;真空碳热还原钛铁矿制备Fe-TiC复合粉体和Fe-TiC复合陶瓷。取得的研究成果如下:1)在氩气气氛下,当反应温度为1200~1500℃时,钛铁矿碳热还原过程中的物相变化规律为:FeTO_3→Fe+Ti_3O_5→Ti_2O_3→TiC_(1-x)O_x→TiC,其中还原产物TiC_(1-x)O_x的最低生成温度为1300℃。随着反应温度的提高和反应时间的延长,还原产物中的Fe相会形成连续相,包裹住碳化钛颗粒和杂质物相(主要由MgO、MgAl_2O_4和Mg_2SiO_4组成)。在氮气气氛下,当反应温度为1200~1500℃时,钛铁矿还原氮化过程中的物相变化规律为:FeTiO_3→Fe+Ti_3O_5 → TiC_(1-x)O_x → TiC_(1-x)N_x,其中TiC_(1-x)O_x和TiC1-xNx的最低生成温度均为1300℃,还原产物中并未发现Ti_2O_3相。在空气气氛下,经过800℃预氧化处理后,钛铁矿转变为Fe_2O_3、TiO_2和Fe_2Ti_3O_9;经过1000℃预氧化处理后,钛铁矿转变为Fe_2O_3、TiO_2和Fe_2TiO_5。虽然预氧化处理并不会改变后续还原过程中的物相转变,但钛铁矿与氧气反应破坏了钛铁矿原有的致密结构,增加了其比表面积,降低了碳热还原反应活化能,还原产物TiC_(1-x)O_x物相的最低生成温度由1300℃降低为1200℃。2)在钛铁矿碳热还原过程中提出了固液反应机理。当反应温度高于1300℃时,钛铁矿在还原初期被快速还原成Fe和TiO_2,固态碳颗粒溶于还原产物Fe中形成液相。由于Fe-C液滴具有良好的流动性,液滴之间会相互聚集在一起形成连续液相包裹住未被还原的低价钛氧化物,形成的液相层会将固态碳颗粒和低价钛氧化物隔绝开,铁液成为固态碳颗粒扩散到未反应核表面的主要传输通道。尽管Fe相中碳的溶解量并不高,但是有大量的活性炭在液相层外侧,随着液相中的碳参与还原反应,外侧的固态碳颗粒会源源不断地溶解进液相中,最终将低价钛氧化物还原为TiC颗粒。3)在真空碳热还原钛铁矿过程中,钛铁矿中的杂质元素Mg、Ca和Mn可以以气态形式从还原产物中分离除去。提高反应温度或真空度,碳热还原产物中的杂质元素Mg、Ca和Mn的含量明显降低。在真空条件下,当反应温度高于1400C时,还原产物中杂质物相MgO、MgAl_2O_4和Mg_2SiO_4消失。真空碳热还原后,还原产物中的杂质元素Si和A1溶于Fe相中。4)真空烧结Fe-TiC复合粉体制备复合陶瓷的过程中,由于烧结真空度高于还原真空度,部分Fe以气态形式挥发,陶瓷基体Fe相中Fe的含量降低。同时,Fe相中的Al元素在烧结过程中生成Al_4C_3,TiC相中的部分Ti元素溶于Fe相中,导致Fe相中A1元素含量降低而Ti元素含量升高。在10Pa条件下,当活性炭与钛铁矿质量比为0.391、反应温度为1500℃、反应时间为4h时,得到Fe-TiC复合粉体中杂质含量较少。酸浸Fe-TiC复合粉体后,得到了颗粒大小约为4μm、形貌为立方体的TiC粉末,其中Si、Fe、Al、Ca和 Mg 的含量分别为 4.53wt%、0.15wt%、0.12wt%、0.089wt%和 0.0088wt%。在0.002Pa条件下,利用该复合粉体在1400℃烧结6h制得的复合陶瓷性能最好,其密度为5.3 g·cm-3、抗弯强度为508.82MPa、维氏硬度为949.9HV。抗弯强度测试中,裂痕穿过TiC晶体并未出现在TiC相与Fe相的界面。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

还原碳化机理论文参考文献

[1].陈丽杰,谢中华,王瑞祥,田磊,聂华平.氧化钨粉还原碳化机理分析及超细碳化钨粉的制备[J].稀有金属与硬质合金.2018

[2].苟海鹏.攀枝花钛铁矿碳热还原过程中碳化钛、碳氮化钛生成机理及其复合材料研究[D].北京科技大学.2017

[3].叶楠,唐建成,吴爱华,魏晓枭.碳氢协同还原-碳化法制备纳米WC粉的工艺及机理[J].稀有金属材料与工程.2017

[4].靳广洲,赵如松,罗运强,高俊斌,孙桂大.氧化钼在CH_4/H_2气氛中还原碳化机理研究[J].燃料化学学报.2008

标签:;  ;  ;  ;  

还原碳化机理论文-陈丽杰,谢中华,王瑞祥,田磊,聂华平
下载Doc文档

猜你喜欢