基于变分模态分解的地震随机噪声压制方法

基于变分模态分解的地震随机噪声压制方法

论文摘要

针对经验模态分解(EMD)方法中递归迭代式筛选过程耗时过长、分解精度不高等问题,提出了基于频率域内全局自适应的变分模态分解(VMD)的地震随机噪声压制方法。与EMD类方法的迭代筛选模式不同,VMD方法的分解过程可转换至变分泛函最优求解过程,以每个带限窄带(BIMF)分量的估计带宽之和最小为约束,通过增广Lagrange目标函数将变分问题由约束性变为非约束性,采用交替方向乘子(ADMM)算法寻求变分泛函的最优解达到信号自适应分解的目的。ADMM中频率中心及带宽交替更新对偶上升,使两者同时达到最优趋势,并生成所有BIMF分量,具有更高的时间效率。同时,各模态分量在频谱上均具有带限特性,可实现信号频带的高分辨率、自适应剖分。实验结果表明,基于VMD的地震随机噪声压制方法具有优异噪声压制、幅值保持性能的同时,还具备较高的计算效率,可满足高维大尺度地震数据的处理要求。

论文目录

  • 0 引言
  • 1 基本原理
  • 2 地震随机噪声压制
  •   2.1 地震信号的域表示
  •   2.2 VMD框架求解
  •   2.3 基于VMD的二维地震信号去噪方法
  •   2.4 基于VMD的三维地震信号去噪方法
  • 3 算例
  •   3.1 VMD参数优选
  •   3.2 二维地震去噪实例
  •   3.3 三维地震去噪实例
  • 4 结束语
  • 文章来源

    类型: 期刊论文

    作者: 方江雄,温志平,顾华奇,刘军,张华

    关键词: 随机噪声压制,经验模态分解,变分模态分解,计算效率

    来源: 石油地球物理勘探 2019年04期

    年度: 2019

    分类: 基础科学,工程科技Ⅰ辑

    专业: 地质学,地球物理学,矿业工程

    单位: 东华理工大学核技术应用教育部工程研究中心,东华理工大学地球物理与测控技术学院,江西省基础地理信息中心

    基金: 国家自然科学基金项目“高分辨率SAR图像自动分割的连续多标记凸松弛方法研究”(61463005)和“面向图像引导放射治疗的腹部器官自动分割方法研究”(61866001),江西省自然科学基金项目“基于多尺度3D全卷积网络肝脏肿瘤自动分割方法研究”(20181BAB211017)和“基于铸坯凝固单元跟踪的多信息融合二冷优化控制机理的研究”(20171BAB202028),教育部核技术应用工程研究中心开放基金项目“伽马辐射成像软硬件技术研究开发”(HJSJYB2016-1)联合资助

    分类号: P631.4

    DOI: 10.13810/j.cnki.issn.1000-7210.2019.04.005

    页码: 757-767+722

    总页数: 12

    文件大小: 5556K

    下载量: 240

    相关论文文献

    • [1].优化递归变分模态分解及其在非线性信号处理中的应用[J]. 物理学报 2019(23)
    • [2].变分模态分解在爆破信号趋势项去除中的应用[J]. 爆炸与冲击 2020(04)
    • [3].辛几何模态分解方法及其分解能力研究[J]. 振动与冲击 2020(13)
    • [4].基于快速本征模态分解的电力系统短期负荷预测[J]. 中国电机工程学报 2013(S1)
    • [5].补充集成极值加权模态分解及其应用[J]. 噪声与振动控制 2020(03)
    • [6].基于匹配追踪和变分模态分解的电气化铁路谐波检测[J]. 济南大学学报(自然科学版) 2020(02)
    • [7].变微分模态分解罚参量选择方法与时变系统识别[J]. 西南交通大学学报 2020(03)
    • [8].基于动态模态分解的缸内流场演变及动能分析[J]. 内燃机工程 2020(05)
    • [9].改进二维变分模态分解的磁源分离[J]. 光学精密工程 2020(05)
    • [10].关于多种模态分解方法的分离效果的差别探讨[J]. 信息技术 2016(12)
    • [11].基于改进极值波延拓的极点对称模态分解端点效应抑制方法[J]. 电工技术学报 2020(S1)
    • [12].基于蝙蝠算法优化的变分模态分解的转子裂纹检测方法[J]. 振动与冲击 2020(06)
    • [13].基于改进变分模态分解的液体密度测量中超声回波去噪方法(英文)[J]. Journal of Measurement Science and Instrumentation 2020(04)
    • [14].基于变分模态分解的变形监测数据去噪方法[J]. 武汉大学学报(信息科学版) 2020(05)
    • [15].基于改进变分模态分解的滚动轴承故障诊断方法[J]. 计量学报 2020(06)
    • [16].变分模态分解在齿轮故障特征提取中的应用[J]. 东北林业大学学报 2019(08)
    • [17].基于模态分解技术的地震信号随机噪声压制方法研究[J]. 科技广场 2017(08)
    • [18].动态模态分解方法在缸内湍流场研究中的应用[J]. 内燃机学报 2016(04)
    • [19].基于变分模态分解与快速谱峭图的齿轮箱滚动轴承故障特征提取[J]. 机械传动 2020(01)
    • [20].基于改进自适应变分模态分解的滚动轴承微弱故障诊断[J]. 振动与冲击 2020(08)
    • [21].变分模态分解与深度信念网络的双转子不对中程度识别[J]. 机械科学与技术 2020(05)
    • [22].基于时延自相关与变模态分解的故障诊断方法[J]. 兰州理工大学学报 2017(04)
    • [23].变分框架下多尺度熵相关优化的模态分解在故障诊断中的应用[J]. 现代制造工程 2017(04)
    • [24].基于变分模态分解的模态参数识别研究[J]. 振动与冲击 2020(02)
    • [25].基于变分模态分解的直肠压力信号预处理研究[J]. 工业控制计算机 2020(03)
    • [26].基于变分模态分解的故障弱信息提取方法[J]. 华中科技大学学报(自然科学版) 2020(07)
    • [27].香农熵改进的变分模态分解与故障特征提取[J]. 机械科学与技术 2020(07)
    • [28].基于变分模态分解与模糊聚类的船用齿轮箱故障诊断[J]. 珠江水运 2020(16)
    • [29].基于变分模态分解时频图的轴承故障诊断[J]. 天津职业技术师范大学学报 2020(03)
    • [30].基于变分模态分解与双向长短期记忆神经网络的超短期风速预测[J]. 工业控制计算机 2020(09)

    标签:;  ;  ;  ;  

    基于变分模态分解的地震随机噪声压制方法
    下载Doc文档

    猜你喜欢