论文摘要
高光谱遥感影像数据具有多样化的光谱信息和空间信息,然而传统的高光谱影像分类只是针对目标的光谱特征进行处理。基于三维空间滤波操作可以作为一种简单高效的提取高光谱影像光谱和空间特征的方式,基于此提出一种改进的三维卷积神经网络框架以实现更加准确的高光谱遥感影像分类。利用高光谱遥感影像数据立方体有效地提取光谱-空间组合特征,而不依赖于任何预处理或后期处理。另外,与其他传统的基于深度学习的方法相比,该方法去除了池化层,从而达到所需参数更少,模型规模更小,更容易训练的效果。将该方法与其他基于深度学习的高光谱遥感影像分类方法进行了比较,并使用两个真实场景的高光谱遥感影像数据集作为测试。实验结果表明,该方法在地物分类准确度方面较传统的基于深度学习的高光谱遥感影像分类方法取得了更好的分类效果。
论文目录
文章来源
类型: 期刊论文
作者: 赵扬,杨清洁
关键词: 遥感,高光谱图像分类,深度学习,三维卷积神经网络
来源: 信息技术与网络安全 2019年06期
年度: 2019
分类: 信息科技,工程科技Ⅱ辑
专业: 工业通用技术及设备,自动化技术
单位: 中国科学技术大学信息科学技术学院
分类号: TP751;TP183
DOI: 10.19358/j.issn.2096-5133.2019.06.009
页码: 46-51
总页数: 6
文件大小: 288K
下载量: 550
相关论文文献
标签:遥感论文; 高光谱图像分类论文; 深度学习论文; 三维卷积神经网络论文;