数的展式中一些分形集的研究

数的展式中一些分形集的研究

论文摘要

在数的展式及相关动力系统的研究中,展式字符满足某些限制条件及动力系统的很多不变集都是分形.研究这些分形集的结构和Hausdorff维数是数论和动力系统中十分关心的问题.Schmidt’s game作为研究分形集的可数交的一个重要工具,近年来在国内外的相关研究中得到了广泛的应用.负基展式作为经典正基展式的一种推广,是最近十多年才被提出并引起关注的一类新的展式.负基展式及对应的动力系统与经典情形相比,他们的组合结构和拓扑性质都有很大差异.本论文主要研究了两个问题,一个是Schmidt的(α,β)-game关于参数a,b变化时的性质;另一个是在(-β)-变换下,轨道不稠密点所构成的集合的维数.第一章是绪论部分.主要介绍了Schmidt’s game和非整数基展式的研究背景.首先介绍了Schmidt’s game在丢番图逼近和数的展式、动力系统的轨道逼近问题中的应用,以及Schmidt的(α,β)-game关于参数a,b的已有结论.接着介绍了非整数基展式的研究背景和研究现状,并着重介绍了负基展式的研究情况以及与正基展式的比较.最后介绍了本论文的主要研究问题.第二章是预备知识,主要介绍了一些分形几何、动力系统以及数的展式的一些定义和基本性质.主要内容为Hausdorff测度和维数的定义及基本性质,符号空间的定义,几类数的展式的简单介绍,Schmidt的(α,β)-game的定义及winning集的性质.第三章主要研究了Schmidt的(α,β)-game在参数α,β变化时的性质.Schmidt在其专著中提出了(α,β)-winning集在参数a减小时是否仍然是winning的问题.这一问题由Freiling给出了否定的解答.我们从另一方向提出问题,即参数b变大时,所给集合是否仍然保持winning不变,并给出了解答.第四章主要研究了在(-β)-变换下,轨道不稠密点所组成的集合的Hausdorff维数,证明了该集合是满维的.在经典β-变换下,类似的集合总是零测满维的.但当b小于黄金分割数的倒数时,在(-β)-变换下,该集合不是零测的.第五章对论文的研究工作进行了总结,并针对已有的研究结果提出了一些可供进一步研究的问题.

论文目录

  • 摘要
  • Abstract
  • 第一章 绪论
  •   1.1 问题的研究背景及研究现状
  •   1.2 论文研究的主要内容
  • 第二章 预备知识
  •   2.1 Hausdorff测度和维数
  •     2.1.1 Hausdorff测度
  •     2.1.2 Hausdorff维数
  •   2.2 符号空间
  •   2.3 整基展式
  •   2.4 Schmidt’s game
  •   2.5 β-展式
  •   2.6 (-β)-展式
  • 第三章 Schmidt的(α,β)-game关于参数扰动的研究
  •   3.1 预备知识
  •   3.2 定理3.1 的证明
  •   3.3 本章工作总结
  • 第四章 (-β)-变换下轨道不稠密点集的维数
  •   4.1 预备知识
  •   4.2 定理4.1 的证明
  •   4.3 本章工作总结
  • 第五章 总结与展望
  •   5.1 本文工作总结
  •   5.2 进一步的研究问题
  • 参考文献
  • 攻读硕士学位期间发表的论文
  • 致谢
  • 文章来源

    类型: 硕士论文

    作者: 张晗玥

    导师: 胡慧

    关键词: 测度,维数,展式

    来源: 南昌航空大学

    年度: 2019

    分类: 基础科学

    专业: 数学

    单位: 南昌航空大学

    分类号: O189

    总页数: 40

    文件大小: 1120K

    下载量: 32

    相关论文文献

    • [1].Riesz potentials of Hardy-Hausdorff spaces and Q-type spaces[J]. Science China(Mathematics) 2020(10)
    • [2].星体的对偶Orlicz Hausdorff度量[J]. 重庆工商大学学报(自然科学版) 2017(02)
    • [3].拓扑Hausdorff维数的一种计算方法及其应用[J]. 四川师范大学学报(自然科学版) 2017(04)
    • [4].Hausdorff Dimensions of Quasilines and Differentiability of Quasisymmetric Homeomorphisms[J]. Acta Mathematica Sinica 2016(04)
    • [5].有关Hausdorff测度的两类覆盖形式[J]. 东北师大学报(自然科学版) 2013(04)
    • [6].R~3上一类特殊Besicovitch集的维数估计[J]. 数学杂志 2020(04)
    • [7].一种参数曲线间Hausdorff距离的计算方法[J]. 图学学报 2014(05)
    • [8].Hitting Probabilities and the Hausdorff Dimension of the Inverse Images of a Class of Anisotropic Random Fields[J]. Acta Mathematica Sinica 2015(12)
    • [9].平面曲线间Hausdorff距离计算[J]. 大连理工大学学报 2014(02)
    • [10].A Local Property of Hausdorff Centered Measure of Self-Similar Sets[J]. Analysis in Theory and Applications 2014(02)
    • [11].两条参数曲线间的Hausdorff距离的研究[J]. 华中师范大学学报(自然科学版) 2012(03)
    • [12].基于递归图的一类自仿集的Hausdorff维数[J]. 洛阳理工学院学报(自然科学版) 2011(01)
    • [13].预Hausdorff空间的一些简单性质[J]. 云南师范大学学报(自然科学版) 2011(05)
    • [14].魔鬼阶梯的Hausdorff测度与Hausdorff维数[J]. 湖北民族学院学报(自然科学版) 2009(02)
    • [15].带有扩张Hausdorff度量超空间的一些性质[J]. 长春师范学院学报(自然科学版) 2008(12)
    • [16].拟共形映射和HAUSDORFF维数[J]. 数学物理学报 2008(01)
    • [17].Fast Growth Entire Functions Whose Escaping Set Has Hausdorff Dimension Two[J]. Chinese Annals of Mathematics,Series B 2019(04)
    • [18].三波作用下准地转模式的Hausdorff维数估计[J]. 高原气象 2016(01)
    • [19].基于Hausdorff距离的分形研究[J]. 滨州学院学报 2015(02)
    • [20].基于Hausdorff距离的区间数据的系统聚类分析[J]. 数理统计与管理 2014(04)
    • [21].Hausdorff测度的规范化处理[J]. 东北师大学报(自然科学版) 2013(01)
    • [22].两条代数曲线间Hausdorff距离的计算[J]. 浙江工业大学学报 2013(05)
    • [23].Multilinear Hausdorff Operators and Their Best Constants[J]. Acta Mathematica Sinica 2012(08)
    • [24].‘方形花状’分形集的Hausdorff测度[J]. 太原科技大学学报 2011(04)
    • [25].一类区间映射非游荡集的Hausdorff维数[J]. 吉林大学学报(理学版) 2009(04)
    • [26].基于Hausdorff距离和免疫遗传算法在图像匹配的应用研究[J]. 兵工自动化 2008(02)
    • [27].The Dimension Paradox in Parameter Space of Cosine Family[J]. Chinese Annals of Mathematics,Series B 2020(04)
    • [28].基于混合Hausdorff距离的多示例分类问题[J]. 科学技术与工程 2017(05)
    • [29].改进Hausdorff距离和量子遗传算法在激光制导中的应用[J]. 激光技术 2016(03)
    • [30].几种集合的Hausdorff维数[J]. 毕节学院学报 2012(04)

    标签:;  ;  ;  

    数的展式中一些分形集的研究
    下载Doc文档

    猜你喜欢