自逃逸论文-郑春颖,王晓丹,郑全弟,谢一静

自逃逸论文-郑春颖,王晓丹,郑全弟,谢一静

导读:本文包含了自逃逸论文开题报告文献综述及选题提纲参考文献,主要关键词:简化粒子群优化算法,基本粒子群优化算法,云理论,复形法

自逃逸论文文献综述

郑春颖,王晓丹,郑全弟,谢一静[1](2010)在《自逃逸云简化粒子群优化算法》一文中研究指出sPSO仍继承了bPSO易陷入局部极值点的缺陷,而且其进化后期收敛速度和精度也有待进一步改善.基于此,提出一种基于云理论的简化粒子群优化算法(简称cloud-sPSO):对不再进化的个体,借鉴复形法的思想,进行尽可能的进化逃逸;而当种群进化停滞时,由基本云发生器对当前群体最优粒子实行变异操作.对几个经典测试函数进行实验的结果表明,cloud-sP-SO不仅能够有效摆脱局部极值点,而且收敛速度和精度也有极大地提高.(本文来源于《小型微型计算机系统》期刊2010年07期)

王文峰,刘光远,温万惠[2](2007)在《求解TSP问题的自逃逸混合离散粒子群算法研究》一文中研究指出通过对旅行商问题(TSP)局部最优解与个体最优解、群体最优解之间的关系分析,针对DPSO算法易早熟和收敛慢的缺点,重新定义了离散粒子群DPSO的速度、位置公式,结合生物界中物种在生存密度过大时个体会自动分散迁徙的特性和局部搜索算法(SEC)后,提出了一种新的自逃逸混合离散粒子群算法(SEHDPSO)。自逃逸思想是一种确定性变异操作,能使算法中陷入局部极小区域的粒子通过自逃逸行为进行全局寻优,从而克服算法易早熟的缺陷。仿真结果表明,SEHDPSO算法比混合蚁群算法(ACS+2-OPT)具有更好的收敛性和搜索效率。(本文来源于《计算机科学》期刊2007年08期)

自逃逸论文开题报告

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

通过对旅行商问题(TSP)局部最优解与个体最优解、群体最优解之间的关系分析,针对DPSO算法易早熟和收敛慢的缺点,重新定义了离散粒子群DPSO的速度、位置公式,结合生物界中物种在生存密度过大时个体会自动分散迁徙的特性和局部搜索算法(SEC)后,提出了一种新的自逃逸混合离散粒子群算法(SEHDPSO)。自逃逸思想是一种确定性变异操作,能使算法中陷入局部极小区域的粒子通过自逃逸行为进行全局寻优,从而克服算法易早熟的缺陷。仿真结果表明,SEHDPSO算法比混合蚁群算法(ACS+2-OPT)具有更好的收敛性和搜索效率。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

自逃逸论文参考文献

[1].郑春颖,王晓丹,郑全弟,谢一静.自逃逸云简化粒子群优化算法[J].小型微型计算机系统.2010

[2].王文峰,刘光远,温万惠.求解TSP问题的自逃逸混合离散粒子群算法研究[J].计算机科学.2007

标签:;  ;  ;  ;  

自逃逸论文-郑春颖,王晓丹,郑全弟,谢一静
下载Doc文档

猜你喜欢