论文摘要
土壤中植物大量营养素(氮、磷、钾)的有效性是影响作物产量的主要因素之一。这些矿物元素的有效性和形式因土壤类型的不同而有很大的差异。研究表明,通过为植物提供适当的微生物共生体,可以优化土壤营养对植物的有效补充。此外,土壤酵母能够溶解不可利用的磷和铁,并产生植物生长激素,这些激素可帮助植物生长和维持细菌活性。本研究旨在探讨共接种植物促生长细菌(PGPB)—慢生大豆根瘤菌(Bradyrhizobium japonicum)和植物促生长真菌—土壤酵母(Saccharomyces cerevisiae和Saccharomyces exiguus)对大豆(Glycine maxL.Merr)生长和产量的影响,特别是土壤酵母如何影响细菌的空气氮固定率和结瘤率。本研究以台湾292大豆品种为试验对象,采用完全随机实验设计:接种慢生大豆根瘤菌B.japonicum(T1;接种土壤酵母S.cerevisiae(T2;接种S.exiguus(T3);共接种土壤酵母S.cerevisiae和B.japonicum(T4);共接种S.exiguous及B.japonicum(T5)以及对照(T6),每个处理重复4次。结果表明,在大豆上共接种B.japonicum和S.cerevisiae以及共接种S.exiguous和B.japonicum,可明显改善幼苗生长初期的根和茎生长以及干物质累积。与B.jponicum单接种和未接种处理相比,大豆根瘤数、根瘤干重、根茎生长、大气氮固定效率、养分含量和种子产量均有改善。与双接种相比,单接种B.japonicum和单接种S.cerevisiae或S.exiguous对大豆幼苗期植株生长发育、叶片叶绿素含量、根瘤数、根瘤干重、大气氮固定效率、植株干重、植株磷、氮含量和蛋白质含量没有显著改善。结果表明,土壤酵母菌和硝化细菌的双重应用提高了大豆的生物化学和生理活性,促进了大豆的生长和生产力的提高。建议将土壤酵母和硝化细菌联合接种,作为提高大豆产量的新型生物肥料。
论文目录
文章来源
类型: 硕士论文
作者: Zveushe Obey Kudakwashe
导师: Han Ying
关键词: 尿素,大豆
来源: 西南科技大学
年度: 2019
分类: 基础科学,农业科技
专业: 生物学,农业基础科学,农艺学,农作物
单位: 西南科技大学
分类号: S565.1;S154.3
总页数: 50
文件大小: 3131K
下载量: 14
相关论文文献
- [1].Effects of Saccharomyces cerevisiae or boulardii yeasts on acute stress induced intestinal dysmotility[J]. World Journal of Gastroenterology 2016(48)
- [2].Effects of proteinase A on cultivation and viability characteristics of industrial Saccharomyces cerevisiae WZ65[J]. Journal of Zhejiang University(Science B:An International Biomedicine,Biochemistry & Biotechnology Journal) 2009(10)
- [3].3株酿酒酵母发酵过程中有机酸含量变化分析[J]. 食品与机械 2019(10)
- [4].Effects of antibacterial compounds produced by Saccharomyces cerevisiae in Koumiss on pathogenic Escherichia coli O_8 and its cell surface characteristics[J]. Journal of Integrative Agriculture 2017(03)
- [5].Stk2,a Mitogen-Activated Protein Kinase from Setosphaeria turcica,Specifically Complements the Functions of the Fus3 and Kss1 of Saccharomyces cerevisiae in Filamentation,Invasive Growth,and Mating Behavior[J]. Journal of Integrative Agriculture 2013(12)
- [6].双层面调控Saccharomyces cerevisiae碳流促进L-乳酸积累[J]. 微生物学报 2011(01)
- [7].Genotoxicity of gold nanoparticles functionalized with indolicidin towards Saccharomyces cerevisiae[J]. Journal of Environmental Sciences 2018(04)
- [8].外源添加乙酸对酿酒酵母(Saccharomyces cerevisiae)产2,3-丁二醇影响初探[J]. 中国农学通报 2020(21)
- [9].Saccharomyces cerevisiae和Yarrowia lipolytica对自由饱和脂肪酸的选择性吸收及胞内积累特性研究[J]. 中国生物工程杂志 2017(02)
- [10].Parameter Optimization for Enhancement of Ethanol Yield by Atmospheric Pressure DBD-Treated Saccharomyces cerevisiae[J]. Plasma Science and Technology 2014(01)
- [11].Breeding of Saccharomyces cerevisiae[J]. Agricultural Biotechnology 2019(04)
- [12].A novel approach to regulate cell membrane permeability for ATP and NADH formation in Saccharomyces cerevisiae induced by air cold plasma[J]. Plasma Science and Technology 2017(02)
- [13].Integrated Expression of the Oenococcus oeni mleA Gene in Saccharomyces cerevisiae[J]. Agricultural Sciences in China 2009(07)
- [14].De novo biosynthesis of liquiritin in Saccharomyces cerevisiae[J]. Acta Pharmaceutica Sinica B 2020(04)
- [15].Filamentation of Metabolic Enzymes in Saccharomyces cerevisiae[J]. Journal of Genetics and Genomics 2016(06)
- [16].Studies on Extraction Process of Polysaccharides from Saccharomyces cerevisiae[J]. Agricultural Biotechnology 2015(01)
- [17].Removing cadmium from electroplating wastewater by waste saccharomyces cerevisiae[J]. Transactions of Nonferrous Metals Society of China 2008(04)
- [18].Real Time,in situ Observation of the Photocatalytic Destruction of Saccharomyces cerevisiae Cells by Palladium-modified Nitrogen-doped Titanium Oxide Thin Film[J]. Journal of Materials Science & Technology 2015(01)
- [19].Identification of acetic-acid tolerance of Saccharomyces cerevisiae strains by microsatellite markers[J]. Journal of Chongqing University(English Edition) 2015(02)
- [20].Identification of a Long-Chain Fatty Acid Elongase from Nannochloropsis sp. Involved in the Biosynthesis of Fatty Acids by Heterologous Expression in Saccharomyces cerevisiae[J]. Journal of Ocean University of China 2019(05)
- [21].酿酒酵母(Saccharomyces cerevisiae)WBG3菌株发酵特性研究[J]. 中国农学通报 2018(32)
- [22].生产乳豆混合开菲尔的酵母菌株的筛选[J]. 食品与发酵科技 2012(02)
- [23].Statistical evaluation of beer spoilage bacteria by real-time PCR analyses from 2010 to 2016[J]. 中外酒业·啤酒科技 2019(07)
- [24].Measurement of cytoplasmic Ca~(2+) concentration in Saccharomyces cerevisiae induced by air cold plasma[J]. Plasma Science and Technology 2018(04)
- [25].Construction of recombinant industrial Saccharomyces cerevisiae strain with bglS gene insertion into PEP4 locus by homologous recombination[J]. Journal of Zhejiang University(Science B:An International Biomedicine & Biotechnology Journal) 2008(07)
- [26].酿酒酵母S.cerevisiae YQ-7的高密度发酵[J]. 中国酿造 2010(10)
- [27].原位预处理甘蔗糖蜜对耐高温酿酒酵母突变株Saccharomyces cerevisiae AQ生产乙醇的影响[J]. 广西科学 2016(01)
- [28].Construction of Saccharomyces cerevisiae Strain Stably Expressing a Fusion Protein Containing Ten Tandem Recombinant Human Glucagon-like Peptide-1 Analogues[J]. Chemical Research in Chinese Universities 2009(06)
- [29].基于CRISPR-Cas9系统的Saccharomyces cerevisiae基因删除[J]. 食品科学 2019(06)
- [30].Differentiation of Behcet's disease from inflammatory bowel diseases:Anti-saccharomyces cerevisiae antibody and anti-neutrophilic cytoplasmic antibody[J]. World Journal of Gastroenterology 2008(47)