双模压缩态论文-李强

双模压缩态论文-李强

导读:本文包含了双模压缩态论文开题报告文献综述及选题提纲参考文献,主要关键词:压缩态光场,非简并光学参量放大器,薛定谔猫态,保真度

双模压缩态论文文献综述

李强[1](2016)在《实验制备高纯度的双模压缩态光场》一文中研究指出压缩态光场在量子信息处理和量子测量等前沿领域中有广泛的应用。利用压缩态光场,我们可以实现Einstein-Podolsky-Rosen(EPR)纠缠源的制备、高精度的量子测量、多组份纠缠态的制备、引力波探测以及光学薛定谔猫态的实验制备等。实现压缩态光场的实验制备,对于量子光学领域的基础和应用研究意义重大。长期以来,科学家们致力于如何提高压缩态光场的压缩度和产生压缩态光场的方法等方面的研究。随着量子光学和量子信息研究的发展,科学家发现在某些情况下单纯提高压缩态光场的压缩度是不够的。为了完成一些更为复杂的研究工作,我们还需要关注压缩态光场的纯度。光学薛定谔猫态是一种重要的量子资源。从一个压缩真空态中减去一个光子是制备光学薛定愕猫态的一种有效方法。研究表明,通过这种方法制备薛定谔猫态的保真度依赖于压缩态光场的纯度。我们设计了一个泵浦光部分共振的非简并光学参量放大器,并实验制备了纯度为0.993的双模压缩态光场。特别是我们发现由于热效应的存在,我们的非简并光学参量放大器在较宽的泵浦功率范围内获得了纯度较高的双模压缩态光场,这一结果为我们利用非简并光学参量放大器制备光学薛定谔猫态提供了技术参考。本论文的主要研究内容为:1.理论上计算了压缩态光场的纯度和压缩度,分析了它们与各参数的依赖关系,讨论了非简并光学参量放大器中热效应的理论模型。2.实验上我们利用泵浦光部分共振的非简并光学参量放大器,制备了纯度为0.993的双模压缩态,重构了纯压缩态的Wigner函数,并且对实验结果做了分析。(本文来源于《山西大学》期刊2016-06-01)

余镇波[2](2016)在《基于双模压缩态和GHZ态的连续变量量子对话协议研究》一文中研究指出随着经典计算机计算能力的增强和对量子计算机研究的不断深入,导致基于计算复杂度的经典密码系统受到了日益严重的威胁,以经典密码学和量子信息学为基础的量子密码学应能较好地应对这一威胁,其无条件安全性由Heisenberg测不准原理和量子不可克隆定理保证,这使得量子密码具备良好的性能及应用前景。在量子通信方面,量子安全直接通信(Quantum secure direct communication,QSDC)是一个极具吸引力的方向,发送方可以在量子信道中直接传输秘密信息给接收方,自Beige等于2002年设计出首个量子安全直接通信协议以来,多种形式的量子安全直接通信策略被陆续提出,量子安全直接通信也成为量子通信领域的一个重要分支。量子对话(Quantum dialogue,QD)可以使通信方同时实现信息接收和发送的目的,通常也被称作双向QSDC。在量子对话协议中,合法用户仅利用量子信道就可以实现信息交换。量子对话协议具有双向通信的优势,这使其受到了研究者的高度重视。然而,已提出的量子对话协议大都基于离散变量量子态,在现有条件下难以实现或传输效率不高,而连续变量量子通信可以较为容易地通过光学设备实现。近年来,连续变量量子通信在理论和实验方面均受到了广泛的关注。本文围绕连续变量量子对话(Continuous-variable quantum dialogue,CVQD)这一热点课题,借助连续变量GHZ态、连续变量双模压缩真空态、块传输策略、诱骗光子等,设计了叁个全新的连续变量量子对话协议,并结合密码学知识,对所提出协议的效率及安全性进行了分析,具体研究内容如下:利用双模压缩真空态,设计了一个连续变量量子对话协议,通信双方通过平移操作将秘密信息编码到纠缠光学模中,任意一个通信方通过结合自身的秘密信息及Bell基测量结果,并参照编码规则,可以推断出另一个通信方的秘密信息。该协议的安全性由双模压缩真空态的纠缠特性及选择随机时隙进行诱骗态平移操作保证。相比于已提出的离散变量量子对话协议,该协议易于实现并且协议效率较高。基于块传输方式,提出了一个受多方控制的连续变量量子对话协议,两个合法通信方通过平移操作将秘密信息编码到光学模中,只有在所有控制方均同意的情况下,一个通信方才能获得另外一个通信方的秘密信息。如果有一个控制方不同意此次通信,则通信将会被终止。安全性分析表明该协议能够抵御多种常见攻击,如中间人攻击。基于连续变量GHZ态,一个高效的叁方量子对话协议被提出,其中任意一个合法用户能够同时并且高效地推断出另外两个用户的秘密信息。协议的安全性由GHZ态的纠缠特性及随机选择的诱骗态保证。此外,利用n粒子连续变量GHZ态来制备包含n部分的连续变量GHZ态,理论上,该协议可以较为容易地拓展成一个N方共同参与的QD协议。(本文来源于《南昌大学》期刊2016-05-28)

李强,邓晓玮,张强,苏晓龙[3](2016)在《实验制备纯的双模压缩态》一文中研究指出从一个压缩真空态中减去一个光子是制备光学薛定谔猫态的一种有效方法。研究表明,通过这种方法制备的薛定谔猫态的保真度依赖于压缩态光场的纯度。利用一个抽运光部分共振的非简并光学参量放大器实验制备了纯度为0.993的双模压缩态。由于热效应的存在,非简并光学参量放大器在较宽的抽运功率范围内能够获得纯度较高的双模压缩态。(本文来源于《光学学报》期刊2016年04期)

邵辉丽,李栋,闫雪,陈丽清,袁春华[4](2014)在《基于增强拉曼散射的光子-原子双模压缩态的实现》一文中研究指出拉曼散射过程中利用原子系综中初始制备的自旋激发(原子相干性),以及注入与原子系综中初始制备的自旋激发相关联的种子光场都可以极大的提高光场频率转换的效率,实现增强拉曼散射.本文理论上计算了增强拉曼散射过程中原子-光场量子界面的正交分量的量子起伏,得到了相干性导致的增强拉曼散射,只能在一定的范围内稍微提高初始光子-原子的压缩度;而关联增强拉曼散射,能够制备很强的光子-原子间的双模压缩.这样强压缩度的光子-原子量子界面,对于利用光场和原子系统实现量子精密测量研究有着非常重要的应用.(本文来源于《物理学报》期刊2014年01期)

李蓬勃,李福利[5](2010)在《基于冷原子与超导传输线腔耦合制备双模压缩态》一文中研究指出光场压缩态在量子光学和量子信息领域有重要的应用。可控地产生微波或光波频域的压缩场已经被广泛地在各种物理系统中加以研究,例如腔QED体系以及固体超导量子线路。最近的理论研究表明冷原子与超导传输线腔之间的磁耦合强度可以达到强耦合区,这就为利用此混合体系于量子光(本文来源于《第十四届全国量子光学学术报告会报告摘要集》期刊2010-08-05)

范瑞琴,羊红光,白志明[6](2009)在《纳米力学共振腔的双模压缩态研究》一文中研究指出引入了一个方便的控制和测量纳米力学共振腔(NAMRs)的模型.在旋波近似下引入产生、湮灭算符,得到dc-SQUID的自由Hamilton量和dc-SQUID与两个纳米力学共振腔之间的相互作用Hamilton量.在Heisenberg表象下,把dc-SQUID的模看作一个经典场,采用共同坐标算符和动量算符发现两个纳米力学共振腔的双模会产生压缩态.(本文来源于《应用数学和力学》期刊2009年09期)

姜军[7](2009)在《双模纠缠相干压缩态正规二分量正则分布的研究》一文中研究指出近些年来,在量子力学中创造和发展了有序算符内的积分技术(简称为IWOP)使得狄拉克的符号表示更加完善,能很好地表达很多的物理规律,并逐渐得到应用和推广,应用IWOP技术可以构造新表象、导出算符恒等式、研究相干态和压缩态的完备性及量子力学转动等问题,并发展了量子力学的变换论,虽然涉及到这种理论的文献很少,但是它已经渗透到许多领域,在群表示论、分子振动理论、固体理论及量子场论中都有一些重要应用[1-4]。在文献[20]中运用了IWOP技术及在相似变换下Weyl编序不变性说明了具有纠缠的双模混合态二分量正则分布能够变成正规形式,并且还分析了它的边缘分布。本文给出一个复杂的双模压缩算符,并得到其密度矩阵,进一步对文献[20]进行了推广。本文给出的双模耦合纠缠相干压缩算符为得到它的密度矩阵表示,分析了其纠缠性,然后通过运用IWOP技术及在相似变换下Weyl编序不变性,研究了具有相干纠缠压缩的双模混合态二分量正则分布形式,表明量子统计中的密度算符和数学统计中的密度算符有类似之处,可以运用数学的方法进行处理,并且分析了边缘分布,对变量进行了计算,从而把量子统计中的密度矩阵原理与数学统计中的密度矩阵原理紧密的联系在一起。针对结论进行分析并与文献[20]比较,可以得出,本文中的结论更具有广泛的应用。(本文来源于《东北师范大学》期刊2009-06-01)

易智,何广强,曾贵华[8](2009)在《基于双模压缩态的量子投票协议》一文中研究指出提出了一种基于双模压缩态的基本量子投票协议,该协议通过随机选择信号加载的方式,充分利用量子信号测不确定性原理实现了分布式投票系统.并在此基础上分析可能遇到的攻击.双模压缩态的模间关联性保证了该方案的安全性.(本文来源于《物理学报》期刊2009年05期)

易智[9](2008)在《基于双模压缩态的量子保密通信协议》一文中研究指出随着信息化的发展,信息安全成为全社会的需求,信息安全保障成为国际社会关注的焦点。因为信息安全关系国家的政治安全、经济安全、军事安全、社会稳定,也关系到社会中每一个人。经典信息理论、通信理论和量子力学基本原理相结合,开辟了信息通信安全研究的一个新领域——量子保密通信学,提供了一个新的方法来确保信息通信系统的安全。量子保密通信依靠量子力学基本原理,确保了在信息通信过程中的安全性,是许多量子信息研究领域的一个基础课题,如量子密钥分发,量子直接安全通信,量子身份认证,量子秘密共享等。本文致力于基于双模压缩态的量子保密通信的理论研究。在双模压缩态的检测技术研究的基础上提出2个基于双模压缩态的量子保密通信的实际应用。双模压缩态的量子信号实际上基于纠缠的量子连续变量,本文在理论上研究了平衡零差检测器(Balanced homodyne detector)检测连续变量量子信号的原理,并提出了后续的放大电路设计,同时给出了仿真结果。在传统量子信息研究的重点领域QKD上,本文提出了一种基于双模压缩态的量子密钥分发方案,采用Shannon信息论分析了该协议抵抗光束分离攻击的能力,得到秘密信息速率与压缩因子、信道参数之间的解析表达式,双模压缩态的模间关联性保证了该方案的安全性。量子保密通信不仅在量子信息研究领域有重要应用,对于解决经典的实际问题,也能发挥重要作用。本文在基于双模压缩态的量子保密通信基础上提出了一种量子投票协议,该协议通过随机选择信号加载的方式,充分利用量子信号的测不准原理实现了分布式投票系统。对该协议的安全性和性能也作出了必要的分析。(本文来源于《上海交通大学》期刊2008-12-01)

何广强,易智,朱俊,曾贵华[10](2007)在《基于双模压缩态的量子密钥分发方案》一文中研究指出提出了一种基于双模压缩态的量子密钥分发方案,采用Shannon信息论分析了该协议抵抗光束分离攻击的能力,得到秘密信息速率与压缩因子、信道参数之间的解析表达式,双模压缩态的模间关联性保证了该方案的安全性.(本文来源于《物理学报》期刊2007年11期)

双模压缩态论文开题报告

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

随着经典计算机计算能力的增强和对量子计算机研究的不断深入,导致基于计算复杂度的经典密码系统受到了日益严重的威胁,以经典密码学和量子信息学为基础的量子密码学应能较好地应对这一威胁,其无条件安全性由Heisenberg测不准原理和量子不可克隆定理保证,这使得量子密码具备良好的性能及应用前景。在量子通信方面,量子安全直接通信(Quantum secure direct communication,QSDC)是一个极具吸引力的方向,发送方可以在量子信道中直接传输秘密信息给接收方,自Beige等于2002年设计出首个量子安全直接通信协议以来,多种形式的量子安全直接通信策略被陆续提出,量子安全直接通信也成为量子通信领域的一个重要分支。量子对话(Quantum dialogue,QD)可以使通信方同时实现信息接收和发送的目的,通常也被称作双向QSDC。在量子对话协议中,合法用户仅利用量子信道就可以实现信息交换。量子对话协议具有双向通信的优势,这使其受到了研究者的高度重视。然而,已提出的量子对话协议大都基于离散变量量子态,在现有条件下难以实现或传输效率不高,而连续变量量子通信可以较为容易地通过光学设备实现。近年来,连续变量量子通信在理论和实验方面均受到了广泛的关注。本文围绕连续变量量子对话(Continuous-variable quantum dialogue,CVQD)这一热点课题,借助连续变量GHZ态、连续变量双模压缩真空态、块传输策略、诱骗光子等,设计了叁个全新的连续变量量子对话协议,并结合密码学知识,对所提出协议的效率及安全性进行了分析,具体研究内容如下:利用双模压缩真空态,设计了一个连续变量量子对话协议,通信双方通过平移操作将秘密信息编码到纠缠光学模中,任意一个通信方通过结合自身的秘密信息及Bell基测量结果,并参照编码规则,可以推断出另一个通信方的秘密信息。该协议的安全性由双模压缩真空态的纠缠特性及选择随机时隙进行诱骗态平移操作保证。相比于已提出的离散变量量子对话协议,该协议易于实现并且协议效率较高。基于块传输方式,提出了一个受多方控制的连续变量量子对话协议,两个合法通信方通过平移操作将秘密信息编码到光学模中,只有在所有控制方均同意的情况下,一个通信方才能获得另外一个通信方的秘密信息。如果有一个控制方不同意此次通信,则通信将会被终止。安全性分析表明该协议能够抵御多种常见攻击,如中间人攻击。基于连续变量GHZ态,一个高效的叁方量子对话协议被提出,其中任意一个合法用户能够同时并且高效地推断出另外两个用户的秘密信息。协议的安全性由GHZ态的纠缠特性及随机选择的诱骗态保证。此外,利用n粒子连续变量GHZ态来制备包含n部分的连续变量GHZ态,理论上,该协议可以较为容易地拓展成一个N方共同参与的QD协议。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

双模压缩态论文参考文献

[1].李强.实验制备高纯度的双模压缩态光场[D].山西大学.2016

[2].余镇波.基于双模压缩态和GHZ态的连续变量量子对话协议研究[D].南昌大学.2016

[3].李强,邓晓玮,张强,苏晓龙.实验制备纯的双模压缩态[J].光学学报.2016

[4].邵辉丽,李栋,闫雪,陈丽清,袁春华.基于增强拉曼散射的光子-原子双模压缩态的实现[J].物理学报.2014

[5].李蓬勃,李福利.基于冷原子与超导传输线腔耦合制备双模压缩态[C].第十四届全国量子光学学术报告会报告摘要集.2010

[6].范瑞琴,羊红光,白志明.纳米力学共振腔的双模压缩态研究[J].应用数学和力学.2009

[7].姜军.双模纠缠相干压缩态正规二分量正则分布的研究[D].东北师范大学.2009

[8].易智,何广强,曾贵华.基于双模压缩态的量子投票协议[J].物理学报.2009

[9].易智.基于双模压缩态的量子保密通信协议[D].上海交通大学.2008

[10].何广强,易智,朱俊,曾贵华.基于双模压缩态的量子密钥分发方案[J].物理学报.2007

标签:;  ;  ;  ;  

双模压缩态论文-李强
下载Doc文档

猜你喜欢