导读:本文包含了水溶解态有机质论文开题报告文献综述、选题提纲参考文献及外文文献翻译,主要关键词:有机质,光谱,荧光,木质素,溶解性,腔肠动物,河口。
水溶解态有机质论文文献综述
言宗骋,高红杰,郭旭晶,王思宇,于会彬[1](2019)在《蘑菇湖沉积物间隙水溶解性有机质紫外可见光谱研究》一文中研究指出从蘑菇湖选取7个采样点,提取沉积物间隙水DOM样本,运用主成分分析与聚类分析方法对蘑菇湖沉积物间隙水紫外可见光谱进行解析,识别光谱组分与主控因子,并研究DOM的组成、腐殖化程度及空间变化。结果表明,DOM组分为木质素和奎宁、羧酸基团及多烷基腐殖质等,在外围区与深湖区2个区域存在明显差异。从吸收光谱推演出具有良好相关性的S_r、SUVA_(254)、E_2/E_3、E_2/E_4、E_(253)/E_(203)、A_2/A_16个光谱指标,可以用于表征DOM的分子量大小和腐殖化水平,外围区DOM的分子量和腐殖化程度皆高于深湖区,并且在区域内呈现随水深增加而递减的趋势。光谱指标聚类分析结果表明,与腐殖化水平呈正相关的指标(E_(253)/E_(203)、SUVA_(254)、A_2/A_1)在表征DOM腐殖化水平时更具有代表性。根据光谱指标聚类结果将7个采样点分为2类,该结果与主成分分析一致。通过DOM腐殖化程度可以在一定程度上判断其空间变化规律。(本文来源于《环境工程技术学报》期刊2019年06期)
安显金,李维[2](2019)在《非溶解态胡敏酸对土壤中硬碳有机质解吸多环芳烃的影响》一文中研究指出土壤有机碳是控制土壤中多环芳烃的吸附解吸及其生物有效性的主要因素之一,土壤中硬碳类吸附剂是土壤有机碳中的重要部分,土壤中软碳类物质和硬碳类物质的相互作用对研究土壤中多环芳烃的解吸行为和生物有效性有重要影响。研究将溶解有机质胡敏酸,通过条件的变化使其转变为非溶解态,研究其对土壤碳质吸附剂(胡敏素和黑碳)吸附多环芳烃的解吸行为的影响。研究结果表明:非溶解态胡敏酸会显着降低土壤硬碳类物质中多环芳烃的解吸能力,解吸滞后性增加,作者认为非溶解态胡敏酸的添加会覆盖土壤硬碳类物质的表面吸附位点和填充吸附多环芳烃的孔隙,造成硬碳类有机质中的多环芳烃解吸能力下降,滞后性增强。研究还发现硬碳类有机质的比表面积和孔隙度和解吸能力的变化强度呈正相关关系。(本文来源于《地球与环境》期刊2019年05期)
张广彩,于会彬,徐泽华,宋永会,韩美[3](2019)在《基于叁维荧光光谱结合平行因子法的蘑菇湖上覆水溶解性有机质特征分析》一文中研究指出溶解性有机质(dissolved organic matter,DOM)广泛存在于水体、土壤和沉积物中,在自然系统有机物向无机物的转换过程中起重要作用。DOM作为载体可影响污染物迁移转化,作为碳源和营养元素又为微生物提供能量。为探讨湖泊水体中DOM组成、来源和腐殖化程度,以蘑菇湖上覆水为例,采用叁维荧光光谱(3DEEM)结合平行因子法(PARAFAC)分析蘑菇湖上覆水DOM组分,利用荧光指数(FI)、自生源指标(BIX)和腐殖化指数(HIX)等光谱指数研究DOM来源和腐殖化程度,并通过FI与最大荧光强度(Fmax)的相关性解释DOM种类和特征。结果表明:(1)蘑菇湖上覆水DOM包含4种组分,其中C1和C4为富里酸物质,C2为类蛋白中色氨酸物质,C3为腐殖酸物质;(2)蘑菇湖上覆水DOM以微生物内源代谢产物为主,生物可利用性较高,腐殖化程度较低;(3)各组分Fmax与FI间均呈正相关关系,其中富里酸与FI之间呈显着正相关(r=0. 89,P<0. 01)。这表明蘑菇湖上覆水DOM主要为含羰基、羟基等活性官能团的相对分子质量小,且腐殖化、芳香性和分子缩合度较低的类富里酸物质。(本文来源于《生态与农村环境学报》期刊2019年07期)
程琼,庄婉娥,杨丽阳[4](2018)在《水生系统中溶解态有机质的激发效应研究进展》一文中研究指出溶解态有机质(DOM)的迁移转化是影响水环境生物地球化学循环和生态系统功能的重要过程.DOM是来源丰富、化学结构和活性不同的成千上万种化合物的混合物.其中,活性组分的存在可能促进微生物对惰性组分的降解,形成清除惰性DOM的一个重要机制,即激发效应,对全球碳循环和生态系统产生深远影响.当前,水生系统DOM激发效应研究主要运用各种化学和生物的方法,监测添加活性DOM对惰性DOM的降解速率和微生物丰度与群落结构的改变.在不同的研究体系中,存在正激发、负激发和无激发等3种效应,受到活性DOM和惰性DOM的特征、微生物响应特征和环境因子等的综合作用.新方法的应用和典型区域、典型事件的观测,将有助于评估水生系统DOM的激发效应、深入理解DOM的微生物转化过程.(本文来源于《环境化学》期刊2018年01期)
冯伟莹,王圣瑞,张生,焦立新,李畅游[5](2014)在《pH对洱海沉积物-上覆水溶解性有机质荧光特征影响》一文中研究指出不同pH条件下(pH=2、4、6、8、10、12)培养洱海沉积物,利用叁维荧光光谱(3DEEM)技术研究了其溶解性有机质(DOM)在培养前后荧光光谱特征变化.结果表明:①培养前,洱海沉积物DOM类富里酸荧光峰在pH(2—8)发生"红移",pH(8—12)时发生"蓝移",紫外区类富里酸(A峰)荧光强度>可见区类富里酸(C峰)荧光强度,类富里酸荧光物质受pH影响不大,这与其结构复杂且不易降解有关.②培养前,洱海沉积物DOM类酪氨酸物质受pH影响较大,可见光区类酪氨酸(B1峰)荧光强度>紫外区类酪氨酸(B2峰)荧光强度,这与其结构不稳定、易降解及其酚羟基解离pH范围有关.③培养后,洱海沉积物DOM可见区与紫外区类富里酸荧光强度比培养前分别降低了34.1%、32.2%,可见区与紫外区类酪氨酸荧光强度较培养前升高了57.06%、86.65%,即洱海沉积物DOM在培养后部分类富里酸物质逐渐降解为易被微生物利用的类酪氨酸物质,且在偏碱性(pH=8)环境条件下转化最为明显,沉积物DOM组成结构的转化对湖泊水污染与富营养化具有重要指示意义.(本文来源于《环境化学》期刊2014年02期)
鲍红艳,吴莹,张经[6](2013)在《红树林间隙水溶解态陆源有机质的光降解和生物降解行为分析》一文中研究指出红树林输送的溶解态陆源有机质是海洋中陆源有机质的主要来源之一,对其光降解和生物降解过程的研究有助于进一步了解红树林生态系统输出的有机质在近岸的归宿以及对近岸水体生物地球化学过程的影响,因此于2010年4月在海南省清澜港红树林采集间隙水,并进行了光降解和生物降解培养实验。分析了光培养(光降解)和暗培养过程(生物降解)中溶解态有机碳(DOC)、细菌以及溶解态木质素等的变化。结果显示经历128d的暗培养后,DOC由初始的2 216μmol/L下降至718μmol/L,表明红树林间隙水的生物可利用性约为70%左右;经历11d的自然光照后,DOC下降至800μmol/L。木质素在光降解过程中的移除速率(-0.132d-1)远高于生物降解过程(-0.008d-1)。光培养中,木质素的下降速率高于总体DOC。不同系列溶解态木质素的下降速率不同,随着培养的进行,紫丁香基酚类(S)与香草基酚类(V)的比值(S/V)呈下降趋势,而V系列的酸醛比值((Ad/Al)v)呈上升的趋势。对比光培养和暗培养过程中DOC和木质素的变化可以得出生物消耗是引起红树林间隙水DOC从水体中移除的主要因素;而光照则是陆源有机质从水体中移除的主要因素;光培养和暗培养过程中细菌变化的差异表明光照可以促进细菌对溶解态有机碳的利用。与其他地区比较发现,海南红树林间隙水的光降解速率与热带河流(刚果河)相近,高于温带密西西比河流,降解过程中各参数的变化[S/V和(Ad/Al)v]与其他区域接近。(本文来源于《海洋学报(中文版)》期刊2013年03期)
郭旭晶,彭涛,王月,陈凤先[7](2013)在《湖泊沉积物孔隙水溶解性有机质组成与光谱特性》一文中研究指出应用紫外-可见光谱和荧光光谱分析乌梁素海沉积物孔隙水中溶解性有机质(DOM)的组成和来源信息,揭示不同来源污染物对孔隙水DOM结构及地球化学行为的影响.研究结果表明,类蛋白物质含量相对较高的区域,其污染相对较重;沉积物孔隙水DOM的生物指数BIX值都大于0.6,预示沉积物孔隙水中DOM微生物来源贡献较大;在类蛋白荧光物质较高的区域,DOM的腐殖化程度相对较低,其结构相对简单,稳定性较弱;腐殖化指数HIX254分析结果也表明,受污程度较高的区域,DOM的腐殖化程度较低;紫外吸收光谱的斜率能够反映沉积物孔隙水中类腐殖酸的变化,而光谱斜率S350—400比S275—295更能够反应沉积物孔隙水中类腐殖酸的变化,随着S350—400升高,DOM中类蛋白物质的含量呈下降趋势,类腐殖酸含量逐渐增加.(本文来源于《环境化学》期刊2013年01期)
鲍红艳[8](2012)在《溶解态和颗粒态陆源有机质在典型河流和河口的来源、迁移和转化》一文中研究指出河流与河口是陆地碳库和海洋碳库的主要链接。陆源有机质是海洋生态系统中重要的物质来源,在生物地球化学过程中扮演了重要的角色。在全球气候变化的背景下,极端的气候事件例如暴雨,台风等发生的频率可能增加,而同时人文活动对自然过程的干扰日益加剧,对河流-河口区域有机质的组成、来源和控制因素的研究有助于人们认识人文活动对生物地球化学过程的影响。由于人文活动特别是流域内筑坝的影响,在很多河流体系,溶解态有机质取代颗粒态有机质,成为陆地向海洋输送的有机碳的主要形式。虽然我国已经有不少的研究对河流颗粒态和溶解态有机质进行了研究,但系统的、分子水平上的定量分析却鲜见报道,特别是对溶解态有机质。本文以长江流域、海南热带小河口以及浙江河流为研究对象,利用有机质的总体性质(碳氮比值(C/N)、稳定同位素(δ13C)等)和生物标志物(木质素),并且结合野外观测和实验室模拟,对以上区域的颗粒态和溶解态有机质的组成、来源进行示踪,并探讨人文活动与自然过程是怎样共同的影响这些区域的有机质的组成、迁移和转化。长江流域的颗粒态有机质主要来源于土壤有机质、高等植物碎屑和现场生产。利用稳定同位素(613C)和木质素(1ignin)对颗粒态有机质做了定量估算,结果显示土壤有机质为长江流域有机质的主要来源,占50%-70%左右,并且季节变化不大。高等植物碎屑和浮游植物的贡献比例随采样站位和季节的变化而不同,现场生产所占的比例在枯季明显高于洪季,但现场生产不是有机质的主要贡献者。支流的有机质来源相对较丰富,不同的支流主要的贡献者不同,并且支流的洪枯季变化不同,特别需要注意的是洞庭湖和鄱阳湖有机质组成在洪枯季的差异:洪季两湖现场生产的贡献量高达80%,而在枯季则小于20%,与干流洪枯季有机质组成不同。汉江的洪枯季变化不如两湖明显,但在枯季浮游生物对汉江的POC的贡献量也接近50%。长江流域溶解态木质素浓度的变化范围为6.1μg/L-11.6gg/L,而2010年7月-8月洪水时期为10.8μg/L-19.2μg/L。2009年8月-10月,以溶解态木质素Vanillyl(V)系列对有机碳的贡献比例(mg/100mgOC)估算出植物碎屑对溶解态有机质的贡献比例为12%-36%(2009年8月-10月)和24%-32%(2010年7月-8月),并且上游(24.5±8.3%)高于中下游(15.4±2.4%),长江中下游洪水期间高于(27.0±4.0%)高于非洪水期间(15.44±2.4%)。长江流域季节性的悬浮颗粒物浓度(TSM)的变化、叁峡蓄水以及与此相关的长江中下游的冲刷、两湖调节等因素是影响长江入海颗粒态有机质组成和通量主要因素。特别需要注意的是,叁峡蓄水后,来自于上游泥沙的减少以及相对不变的水动力过程(除了每年9月中旬-10月中旬,叁峡的蓄水时期),使得中下游的两湖和冲刷过程成为枯季长江入海颗粒态有机质组成的主要因素。影响长江流域干流DOC的主要因素为流域地形地势、TSM的变化以及人文活动,而溶解态陆源有机质则主要受到光化学降解过程、有机质来源、季节变化、水体浊度、停留时间、叁峡蓄水、絮凝以及颗粒态和溶解态有机质之间的相互作用等因素,并且这些因素相互影响,例如絮凝、水体浊度等受到叁峡蓄水的影响;有机质来源则与季节变化有关。对不同体系有机质的暗降解培养和光降解培养实验表明有机质的来源是影响其生物可利用性和光降解特性的关键因素。海南红树林间隙水由于经历较少的光降解过程,因此其光降解速率(-0.132d-1)远高于已经经历长时间搬运和降解过程的长江叁峡库区的溶解态木质素(-0.033d-1)。不同系列的木质素由于其化学结构的不同,降解速率也不同,Syringyl (S)系列的降解速率高于V系列。木质素的酸醛比值((Ad/Al)v)的变化也与初始有机质组成有关,红树林间隙水的溶解态木质素(Ad/Al)v显着上升,但叁峡库区的则有一定的波动,并且上升的幅度不大。将长江叁峡库区的荧光结果与木质素比对,可以发现木质素的降解速率与UVC类腐殖质峰相近,与他人研究中得到的两者的显着相关相符,进一步表明长江叁峡库区的溶解态木质素在进入库区前已经经历了充分的降解过程,可能与长江是大河流体系,水体在流域内有较长的停留时间有关。对海南文昌河流-河口的悬浮颗粒物的δ13C和木质素对有机碳的贡献比例(人8)等参数不同季节的调查表明在文昌河流及河口,颗粒态有机质主要以现场生产为主,并且海草对河口区有机质没有添加作用;通过对溶解态有机质的V(mg/100mg OC)与植物V(mg/100mg OC)比较,可以粗略估算出维管植物对八门湾内DOC的贡献约为14%-40%,而在近岸约为7%-16%。河流内植物碎屑对DOC的贡献比例比长江蓄水时期高,与长江洪水时期相近。红树林对颗粒态和溶解态有机质的贡献不同,八门湾区域溶解态木质素浓度的升高以及(Ad/A1)v的几乎不变,表明红树林对溶解态有机质的显着添加;于此相对的,在红树林区域观察不到颗粒态有机质的显着添加。一些极端气候事件对河流的影响大于季节变化,例如台风期间河口的TSM的变化高于海南不同季节之间的差异;台风期间大量的陆源有机质从流域内冲刷出,并且可以被输送至近岸。河口区水动力过程、台风过程、光化学降解、季节变化、红树林及虾池对河口区颗粒态和溶解态有机质的组成均有不同程度的影响。对浙江小河流洪枯季颗粒态和溶解态有机质的调查结果显示浙江河流颗粒态有机质的来源主要以土壤有机质为主,植物碎屑在有机质中所占比例较小;高等植物碎屑对溶解态有机质的贡献比例为10%-50%;与长江等大河流对污水排放的稀释作用不同,由于小河流系统的低流量以及流域内相对较高的人口密度,浙江河流的DOC在很大程度上受到废水排放的影响。通过统计学(SPSS)的差异性分析得出,两个季节(洪季和枯季)的总体性质上没有显着差异,但∑8存在显着性差异,总体上,洪季悬浮颗粒物的陆源有机质含量更高。这也进一步表明相对于总体性质(POC%、δ13C等),木质素等生物标志物对物源变化更加敏感,可以反映出更细致的物源变化。通过对不同河流以及河口的研究表明人文因素以及自然过程对河流颗粒态和溶解态有机质向海输送的过程中扮演了不同的角色,但这些角色因河流流域大小、流域地形地貌不同。由于受到人文活动的干扰,一些自然过程变得更加重要,例如受到筑坝的影响,光化学降解、淡水絮凝等过程在河流中可能显着,这些都有待更多更深入的研究。(本文来源于《华东师范大学》期刊2012-09-01)
张丰松,李艳霞,杨明,冯成红,李帷[9](2011)在《畜禽粪便堆肥溶解态有机质叁维荧光光谱特征及Cu络合》一文中研究指出畜禽粪便中溶解态有机质(DOM)易与Cu发生络合,从而促进其向土壤溶液和地表水体中迁移。该文对比分析堆肥前后猪粪和牛粪DOM叁维荧光光谱特征变化,并通过荧光猝灭滴定法研究了堆肥对猪粪和牛粪中DOM与Cu络合的影响。研究发现,未经堆腐的猪粪和牛粪DOM中均存在较强的类蛋白荧光峰,包括类酪氨酸峰和类色氨酸峰;除了类蛋白峰,牛粪DOM中还出现了类腐殖质荧光峰。经过堆肥后,猪粪DOM中类酪氨酸峰和类色氨酸峰强度显着减弱,并在可见光激发区域出现类腐殖质峰;与猪粪堆肥类似,牛粪堆肥后类酪氨酸峰和类色氨酸峰也隐没不现,在紫外激发区域出现类腐殖质峰,同时可见光激发区的类腐殖质峰荧光强度减弱,位置发生红移。荧光猝灭试验结果显示,猪粪和牛粪堆肥后与Cu络合容量显着降低。因此,堆肥后改变了畜禽粪便DOM组成,生成大量胡敏酸和富里酸物质,从而降低畜禽粪便中DOM-Cu络合物的迁移性和生物可利用性。(本文来源于《农业工程学报》期刊2011年01期)
刘勇[10](2010)在《海洋动物吸收溶解态有机质(DOM)研究概述》一文中研究指出1909年,P(u|¨)tter提出溶解态有机质(DOM)是绝大多数海洋动物的食物来源,这就是着名的"P(u|¨)tter理论"。"P(u|¨)tter理论"有助于弄清海洋生物的营养来源,了解水环境中生命物质库与非生命物质库间的循环流动状况及流动过程中能量分配情况。该理论是水生态系统结构功能研究的重要内容之一。因此,搞清海洋动物与环境中溶解态有机质的相互关系,对于海洋动物营(本文来源于《中国博物馆》期刊2010年02期)
水溶解态有机质论文开题报告
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
土壤有机碳是控制土壤中多环芳烃的吸附解吸及其生物有效性的主要因素之一,土壤中硬碳类吸附剂是土壤有机碳中的重要部分,土壤中软碳类物质和硬碳类物质的相互作用对研究土壤中多环芳烃的解吸行为和生物有效性有重要影响。研究将溶解有机质胡敏酸,通过条件的变化使其转变为非溶解态,研究其对土壤碳质吸附剂(胡敏素和黑碳)吸附多环芳烃的解吸行为的影响。研究结果表明:非溶解态胡敏酸会显着降低土壤硬碳类物质中多环芳烃的解吸能力,解吸滞后性增加,作者认为非溶解态胡敏酸的添加会覆盖土壤硬碳类物质的表面吸附位点和填充吸附多环芳烃的孔隙,造成硬碳类有机质中的多环芳烃解吸能力下降,滞后性增强。研究还发现硬碳类有机质的比表面积和孔隙度和解吸能力的变化强度呈正相关关系。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
水溶解态有机质论文参考文献
[1].言宗骋,高红杰,郭旭晶,王思宇,于会彬.蘑菇湖沉积物间隙水溶解性有机质紫外可见光谱研究[J].环境工程技术学报.2019
[2].安显金,李维.非溶解态胡敏酸对土壤中硬碳有机质解吸多环芳烃的影响[J].地球与环境.2019
[3].张广彩,于会彬,徐泽华,宋永会,韩美.基于叁维荧光光谱结合平行因子法的蘑菇湖上覆水溶解性有机质特征分析[J].生态与农村环境学报.2019
[4].程琼,庄婉娥,杨丽阳.水生系统中溶解态有机质的激发效应研究进展[J].环境化学.2018
[5].冯伟莹,王圣瑞,张生,焦立新,李畅游.pH对洱海沉积物-上覆水溶解性有机质荧光特征影响[J].环境化学.2014
[6].鲍红艳,吴莹,张经.红树林间隙水溶解态陆源有机质的光降解和生物降解行为分析[J].海洋学报(中文版).2013
[7].郭旭晶,彭涛,王月,陈凤先.湖泊沉积物孔隙水溶解性有机质组成与光谱特性[J].环境化学.2013
[8].鲍红艳.溶解态和颗粒态陆源有机质在典型河流和河口的来源、迁移和转化[D].华东师范大学.2012
[9].张丰松,李艳霞,杨明,冯成红,李帷.畜禽粪便堆肥溶解态有机质叁维荧光光谱特征及Cu络合[J].农业工程学报.2011
[10].刘勇.海洋动物吸收溶解态有机质(DOM)研究概述[J].中国博物馆.2010