论文摘要
为解决连续换相失败机理解析表达缺失导致的LCC-HVDC连续换相失败预警困难的问题,运用统计学习建模的思想,基于Adaboost分类器构建了一种连续换相失败预警器。预警系统特征向量的设计考虑了单次换相失败的解析表达,充分利用仿真或现场历史积累的换相失败的实测数据进行统计学习,得出连续换相失败问题的非线性决策平面。PSCAD的CIGRE标准模型的多场景故障仿真数据验证表明,预警器可基于较小的故障数据集获得较高精度的预警信息,且所需现场实测数据少,具有工程实践的有效性与实用性。
论文目录
文章来源
类型: 期刊论文
作者: 张国辉,李志中,王宾,刘萌,董新洲
关键词: 连续换相失败,故障预警,统计学习
来源: 电力系统保护与控制 2019年19期
年度: 2019
分类: 工程科技Ⅱ辑
专业: 电力工业
单位: 国网山东省电力公司电力科学研究院,电力系统及发电设备控制和仿真国家重点实验室(清华大学电机系)
基金: 国家自然科学基金项目资助(51477084),国网山东省电力公司科技项目“基于全球能源互联网的‘源-网-荷’协调控制技术在大电网安全稳定运行中的应用及工程示范”(2017A-58)~~
分类号: TM721.1
DOI: 10.19783/j.cnki.pspc.181477
页码: 69-77
总页数: 9
文件大小: 905K
下载量: 136
相关论文文献
- [1].基于多步校正的改进AdaBoost算法[J]. 清华大学学报(自然科学版)网络.预览 2008(10)
- [2].基于AdaBoost级联框架的舌色分类[J]. 北京生物医学工程 2020(01)
- [3].基于CEEMDAN+RF+AdaBoost的短期负荷预测[J]. 水电能源科学 2020(04)
- [4].基于AdaBoost算法的炉芯温度预测模型[J]. 钢铁研究学报 2020(05)
- [5].基于iForest-Adaboost的核电厂一回路故障诊断技术研究[J]. 核动力工程 2020(03)
- [6].基于AdaBoost的短期边际电价预测模型[J]. 计算机与数字工程 2020(02)
- [7].基于AdaBoost的雷达剩余杂波抑制方法[J]. 电光与控制 2020(06)
- [8].基于AdaBoost集成学习的窃电检测研究[J]. 电力系统保护与控制 2020(19)
- [9].基于混合采样AdaBoost的地中海贫血数据诊断研究[J]. 数据通信 2020(05)
- [10].基于KELM-AdaBoost方法的短期风电功率预测(英文)[J]. 控制工程 2019(03)
- [11].Adaboost-SVM多因子选股模型[J]. 经济研究导刊 2019(10)
- [12].一种改进的Adaboost-BP算法在手写数字识别中的研究[J]. 大理大学学报 2019(06)
- [13].一种快速AdaBoost.RT集成算法时间序列预测研究[J]. 电子测量与仪器学报 2019(06)
- [14].一种加入动态权重的AdaBoost算法[J]. 重庆师范大学学报(自然科学版) 2019(05)
- [15].基于改进的AdaBoost算法的中压配电网断线不接地故障检测[J]. 电测与仪表 2019(16)
- [16].基于Adaboost算法的人脸检测的研究[J]. 中外企业家 2019(26)
- [17].基于Adaboost.RT算法的隧道沉降时间序列预测研究[J]. 中国计量大学学报 2019(03)
- [18].一种改进的BP-AdaBoost算法及应用研究[J]. 现代电子技术 2019(19)
- [19].AdaBoost的多样性分析及改进[J]. 计算机应用 2018(03)
- [20].基于改进Real AdaBoost算法的软件可靠性预测[J]. 空军工程大学学报(自然科学版) 2018(01)
- [21].一种基于聚类和AdaBoost的自适应集成算法[J]. 吉林大学学报(理学版) 2018(04)
- [22].基于Adaboost算法的人眼检测技术在路考系统中的应用[J]. 汽车与安全 2016(04)
- [23].基于改进Adaboost算法的人脸检测方法[J]. 科技经济导刊 2018(18)
- [24].基于Adaboost和回归树集合技术的疲劳识别研究[J]. 汕头大学学报(自然科学版) 2017(02)
- [25].基于AdaBoost算法的在线连续极限学习机集成算法[J]. 软件导刊 2017(04)
- [26].基于Adaboost的改进多元线性回归算法中长期负荷预测[J]. 太原理工大学学报 2017(05)
- [27].Adaboost人眼定位方法改进与实现[J]. 大连交通大学学报 2017(05)
- [28].基于SVM-Adaboost裂缝图像分类方法研究[J]. 公路交通科技 2017(11)
- [29].基于Adaboost算法的主客观句分类[J]. 长春大学学报 2015(12)
- [30].基于AdaBoost的极限学习机集成算法[J]. 软件导刊 2016(04)