小麦蔗糖转运蛋白5的生物信息学分析

小麦蔗糖转运蛋白5的生物信息学分析

论文摘要

为探讨小麦蔗糖转运蛋白5 (sucrose transporter 5, SUT5)蛋白的数量、结构特征和性质差异,以水稻SUT为模板,BlastP获得21条小麦SUT蛋白序列,其中六条鉴定为小麦SUT5蛋白。将其和水稻SUT5蛋白一起,进行了蛋白质亚细胞定位、基序、二级结构、跨膜结构以及磷酸化位点等相关分析。发现六条小麦SUT5蛋白和水稻SUT5都含有MFS2基序,但水稻SUT5含有BT1基序,小麦SUT5含有PUCC基序。小麦和水稻的SUT5在跨膜结构域处的二级结构较为一致,但N端和C端差异较大,且仅有SUT5-4与水稻SUT5的跨膜结构域数量一致。磷酸化位点预测结果显示,小麦和水稻的SUT5蛋白在C末端都存在丝氨酸的磷酸化位点,N末端差异较大。本研究为小麦SUT5蛋白亚家族的研究和利用提供了理论参考及分析依据。

论文目录

  • 1 结果与分析
  •   1.1 小麦、玉米、拟南芥蔗糖转运蛋白序列的聚类分析
  •   1.2 蛋白理化性质分析
  •   1.3 蔗糖转运蛋白的亚细胞定位分析
  •   1.4 蔗糖转运蛋白的基序分析
  •   1.5 蔗糖转运蛋白的二级结构和跨膜结构分析
  •   1.6 蔗糖转运蛋白的磷酸化位点预测
  • 2 讨论
  • 3 材料与方法
  •   3.1 实验材料
  •   3.2 信息学分析
  • 作者贡献
  • 文章来源

    类型: 期刊论文

    作者: 王旭,白龙阁,曹园园,程岚,刘娜,石永春

    关键词: 小麦,信息学,二级结构,基序

    来源: 分子植物育种 2019年24期

    年度: 2019

    分类: 农业科技

    专业: 农作物

    单位: 河南农业大学生命科学学院

    基金: 河南省教育厅高校重点科研项目(17B210003)资助

    分类号: S512.1

    DOI: 10.13271/j.mpb.017.007990

    页码: 7990-7995

    总页数: 6

    文件大小: 2900K

    下载量: 85

    相关论文文献

    • [1].Molecular genetic analysis of phosphomannomutase genes in Triticum monococcum[J]. The Crop Journal 2015(01)
    • [2].山西省小麦产业发展现状与对策[J]. 湖北农业科学 2013(01)
    • [3].沙埋对小麦(Triticum aestivum)生长的影响及其生理响应[J]. 中国沙漠 2014(03)
    • [4].小麦新品种鄂麦27的特征特性及栽培技术[J]. 湖北农业科学 2011(17)
    • [5].不同施磷量对小麦(Triticum aestivum L.)种子成熟后萌发特性的影响[J]. 石河子大学学报(自然科学版) 2017(02)
    • [6].Quantitative Trait Loci Mapping of Dark-Induced Senescence in Winter Wheat(Triticum aestivum)[J]. Journal of Integrative Plant Biology 2012(01)
    • [7].Phylogenetic Analysis and Expression Patterns of the MAPK Gene Family in Wheat (Triticum aestivum L.)[J]. Journal of Integrative Agriculture 2012(08)
    • [8].Analysis of LMW-GS,α-and γ-Gliadin Gene Coding Sequences from Triticum macha[J]. Agricultural Sciences in China 2010(02)
    • [9].Characterization of a Novel 1Ay Gene and Its Expression Protein in Triticum urartu[J]. Agricultural Sciences in China 2010(11)
    • [10].Molecular Characterization of Two Silenced y-type Genes for Glu-B1 in Triticum aestivum ssp.yunnanese and ssp.tibetanum[J]. Journal of Integrative Plant Biology 2009(01)
    • [11].Analysis of three types of resistance gene analogs in Pm U region from Triticum urartu[J]. Journal of Integrative Agriculture 2018(12)
    • [12].Molecular characterization and expression analysis of Triticum aestivum squamosa-promoter binding protein-box genes involved in ear development[J]. Journal of Integrative Plant Biology 2014(06)
    • [13].Combining Phytate/Ca~(2+) Fractionation with Trichloroacetic Acid/Acetone Precipitation Improved Separation of Low-Abundant Proteins of Wheat (Triticum aestivum L.) Leaf for Proteomic Analysis[J]. Journal of Integrative Agriculture 2013(07)
    • [14].Cloning of TaCYP707A1 Gene that Encodes ABA 8′-Hydroxylase in Common Wheat (Triticum aestivum L.)[J]. Agricultural Sciences in China 2009(08)
    • [15].Combined effects of elevated temperature and CO_2 concentration on Cd and Zn accumulation dynamics in Triticum aestivum L.[J]. Journal of Environmental Sciences 2016(09)
    • [16].Biolistic Genetic Transformation of a Wide Range of Chinese Elite Wheat(Triticum aestivum L.)Varieties[J]. Journal of Genetics and Genomics 2015(01)
    • [17].Genetic Analysis and Molecular Mapping of an All-Stage Stripe Rust Resistance Gene in Triticum aestivum-Haynaldia villosa Translocation Line V3[J]. Journal of Integrative Agriculture 2013(12)
    • [18].Structural and Expressional Variation Analyses of Mitochondrial Genomes Reveal Candidate Transcripts for the S~V Cytoplasmic Male Sterility in Wheat(Triticum aestivum L.)[J]. Journal of Genetics and Genomics 2013(08)
    • [19].TaARR1, a cytokinin response regulator gene in Triticum aestivum, is essential in plant N starvation tolerance via regulating the N acquisition and N assimilation[J]. Journal of Integrative Agriculture 2019(12)
    • [20].Comparative Proteomic Analysis of Wheat (Triticum aestivum L.) Hybrid Necrosis[J]. Journal of Integrative Agriculture 2013(03)
    • [21].Genetic Variation in Triticum turgidum L. ssp. turgidum Landraces from China Assessed by EST-SSR Markers[J]. Agricultural Sciences in China 2008(09)
    • [22].高产优质小麦新品种襄麦35的选育及应用[J]. 湖北农业科学 2017(02)
    • [23].NaCl胁迫对不同小麦品种萌发与幼苗生长的影响[J]. 湖北农业科学 2017(17)
    • [24].TaSCL14,a Novel Wheat(Triticum aestivum L.)GRAS Gene,Regulates Plant Growth,Photosynthesis,Tolerance to Photooxidative Stress,and Senescence[J]. Journal of Genetics and Genomics 2015(01)
    • [25].浅谈小麦品种审定标准[J]. 湖北农业科学 2015(24)
    • [26].Effects of Different Tillage Systems on Soil Properties,Root Growth,Grain Yield,and Water Use Efficiency of Winter Wheat (Triticum aestivum L.) in Arid Northwest China[J]. Journal of Integrative Agriculture 2012(08)
    • [27].冯美臣[J]. 山西农业大学学报(自然科学版) 2017(01)
    • [28].小麦新品种郑麦314的选育及其特征特性[J]. 湖北农业科学 2015(20)
    • [29].Comparative Analysis of Six Triticum turgidum L. Subspecies for Acid and Aluminum Tolerance[J]. Agricultural Sciences in China 2010(05)
    • [30].Draft genome of the wheat A-genome progenitor Triticum urartu[J]. Science Foundation in China 2013(02)

    标签:;  ;  ;  ;  

    小麦蔗糖转运蛋白5的生物信息学分析
    下载Doc文档

    猜你喜欢