论文摘要
本文研究有限可解群的本原特征标,重点探讨本原特征标的乘法分解的存在性和唯一性,以及相伴的辛模结构,目标是将本原特征标的若干经典定理推广到更为一般的不可约特征标,期望建立一大类不可约特征标的乘法分解定理,发展出更有力的证明技术,改进或解决几个相关的特征标问题.作为可解群中本原特征标的推广,本文提出了C-特征标的概念,描述了绝对不可分的C-特征标,即所谓的C*-特征标,包含了Brauer的强不可约特征标;定义了Fitting特征标和不可约特征标的Fitting分解;引入了本原特征标相伴的辛模和辛结构.作为应用,本文得到了C-特征标的零点分布和取值信息,以及C-特征标的置换公式,这些结果均推广了Isaacs,Navarro,Ferguson,Turull,以及Wilde等人关于本原特征标的相应定理.具体讲,本文研究了本原特征标的相互关联的五个问题.(1)本原特征标的置换公式.借助Isaacs的特征标五元组理论和技术,我们重新刻画Wilde关于本原特征标的置换公式,获得了相伴子群更多的结构信息,特别是证明了本原特征标相伴的五元组具有共轭唯一的好元素补.这是一个技术性定理,有很多的用途.(2)本原特征标的零点问题和取值信息.我们考察了特征标五元组的“好元素”,获得了一个新判据,作为应用,建立了C-特征标的三个基本性质,进而推广了Navarro和Wilde关于本原特征标的相关定理,即零点分布定理和置换公式.(3)本原特征标的Fitting分解.我们建立了任意不可约特征标的Fitting分解均具有唯一性,并证明了本原特征标在覆盖群上总存在Fitting分解.(4)本原特征标的辛结构.我们得到了本原特征标的乘法分解与其相伴辛模的正交分解之间的一个对应,借助本原特征标的辛结构,获得了本原特征标的乘法分解中不可约特征标因子个数的精确上界,得到了达到上界的充要条件,并给出了若干本原特征标的乘积仍为本原特征标的一个充分条件.(5)本原特征标乘法分解定理及其推广.给出了C*-特征标的有效判别,并证明了C-特征标在覆盖群上可分解为若干C*-特征标的乘积.事实上,如何构建不可约特征标的乘法分解理论,怎样恰当地定义类似于素数和素数幂的特征标,即精确描述素特征标和准素特征标,进而研究特征标的素分解和准素分解的存在性和某种唯一性,并发展Berger创立的关于可解群的线性表示和射影表示的乘法分解和张量诱导技术,所有这些均属于有限群表示理论中的深刻问题.本文的选题和结果,可视为沿此方向所做的一个初步探讨.
论文目录
文章来源
类型: 博士论文
作者: 常慧敏
导师: 靳平
关键词: 本原特征标,特征标,辛结构
来源: 山西大学
年度: 2019
分类: 基础科学
专业: 数学
单位: 山西大学
分类号: O152.1
总页数: 131
文件大小: 2742K
下载量: 32
相关论文文献
- [1].Dolfi定理C的π-形式[J]. 唐山学院学报 2008(06)