论文摘要
脑疲劳是由于持续进行脑力劳动导致的一种状态,脑电被认为是脑疲劳状态检测的最佳工具。如何选取合适的脑疲劳特征成为脑疲劳检测的关键问题,传统模式识别中手动提取特征会产生信息损失,针对脑电的时空特性,本文设计了具有时域卷积核、空间域卷积核的深层卷积神经网络和浅层卷积神经网络两种网络结构,将特征提取和状态分类合二为一,对正常态与疲劳态脑电数据进行分类,可视化了卷积神经网络的空间域卷积核。结果表明,浅层卷积神经网络平均分类正确率为98.868%,深层卷积神经网络平均分类正确率为98.217%,均高于传统分类方法,通过空间域卷积核的可视化,能够了解不同导联在网络中的参与程度,验证了该模型在脑疲劳检测任务中具有很高的有效性,同时为脑疲劳检测提供了新思路。
论文目录
文章来源
类型: 期刊论文
作者: 杨硕,丁建清,王磊,刘帅
关键词: 脑疲劳状态,脑电,模式识别,卷积神经网络
来源: 信号处理 2019年04期
年度: 2019
分类: 信息科技,基础科学,医药卫生科技
专业: 生物学,生物医学工程,自动化技术
单位: 省部共建电工装备可靠性与智能化国家重点实验室(河北工业大学),河北省电磁场与电器可靠性重点实验室(河北工业大学)
基金: 河北省高等学校自然科学基金(QN2016097),国家自然科学基金(31300818)
分类号: R318;TP183
DOI: 10.16798/j.issn.1003-0530.2019.04.022
页码: 704-711
总页数: 8
文件大小: 1006K
下载量: 146
相关论文文献
- [1].基于优化神经网络的地质灾害监测预警仿真[J]. 计算机仿真 2019(11)
- [2].基于进化神经网络的304不锈钢车削加工表面粗糙度预测[J]. 轻工机械 2019(06)
- [3].时频联合长时循环神经网络[J]. 计算机研究与发展 2019(12)
- [4].几种典型卷积神经网络的权重分析与研究[J]. 青岛大学学报(自然科学版) 2019(04)
- [5].基于GA-BP神经网络异纤分拣机检测参数优化[J]. 棉纺织技术 2020(01)
- [6].基于集成神经网络的织物主观风格预测研究[J]. 纺织科技进展 2020(01)
- [7].试析神经网络技术在机械工程中的应用及发展[J]. 网络安全技术与应用 2020(02)
- [8].一种深度小波过程神经网络及在时变信号分类中的应用[J]. 软件 2020(02)
- [9].不同结构深度神经网络的时间域航空电磁数据成像性能分析[J]. 世界地质 2020(01)
- [10].基于深度神经网络的航班保障时间预测研究[J]. 系统仿真学报 2020(04)
- [11].基于生成对抗网络和深度神经网络的武器系统效能评估[J]. 计算机应用与软件 2020(02)
- [12].基于循环神经网络的双轴打捆机智能换挡策略研究[J]. 安徽工程大学学报 2020(01)
- [13].基于图神经网络的实体对齐研究综述[J]. 现代计算机 2020(09)
- [14].基于改进的循环神经网络深度学习跌倒检测算法[J]. 电脑编程技巧与维护 2020(03)
- [15].神经网络探索物理问题[J]. 物理 2020(03)
- [16].基于GA-BP神经网络的城市用水量预测[J]. 现代电子技术 2020(08)
- [17].基于深度神经网络的药物蛋白虚拟筛选[J]. 软件工程 2020(05)
- [18].基于轻量级神经网络的人群计数模型设计[J]. 无线电工程 2020(06)
- [19].高效深度神经网络综述[J]. 电信科学 2020(04)
- [20].含磁场耦合忆阻神经网络放电行为研究[J]. 广西师范大学学报(自然科学版) 2020(03)
- [21].基于神经网络及特征运算的老年人平衡能力分析[J]. 重庆工商大学学报(自然科学版) 2020(04)
- [22].神经网络技术在机械工程中的应用及发展探析[J]. 科技创新与应用 2020(18)
- [23].基于竞争神经网络的变电站巡视周期分类[J]. 科技创新与应用 2020(18)
- [24].基于双向循环神经网络的语音识别算法[J]. 电脑知识与技术 2020(10)
- [25].结合相似日与改进神经网络的短期光伏发电预测[J]. 广西电业 2020(04)
- [26].基于神经网络的流感大数据分析[J]. 中华医学图书情报杂志 2020(03)
- [27].长短时记忆神经网络在地电场数据处理中的应用[J]. 地球物理学报 2020(08)
- [28].基于门控循环单元神经网络的公交到站时间预测[J]. 南通大学学报(自然科学版) 2020(02)
- [29].鼠脑神经网络的同步辐射3D成像研究[J]. 核技术 2020(07)
- [30].基于长短记忆神经网络的短期光伏发电预测技术研究[J]. 华北电力大学学报(自然科学版) 2020(04)