(上海电机学院上海201306)
摘要:本文详细介绍了一种基于电力电子变换形式的电网模拟器,选取三相四桥臂逆变器作为电网模拟器逆变环节主电路。在静止αβ0坐标系下建立其数学模型,负载不平衡问题进行了系统的研究。最后,在Matlab/Simulink环境中搭建了系统的仿真模型,对所设计的系统的动态和稳态性能进行仿真分析,仿真验证了该拓扑结构的带不平衡负载能力。
关键词:三相四桥臂;αβ0坐标系;不平衡负载
0引言
基于三相平衡负载而言,传统的三相三桥臂逆变器可以得到相当理想的三相输出波形,而面临三相不平衡负载所产生的问题与日俱增,国内外学者关于三相四桥臂逆变器的研究需要更加深入。三相四桥臂电路拓扑较其他电路拓扑而言,其电压利用率相对较高,结构也相对简单,损耗也相对较小,而且在体积与重量方面也存在一定的优越性。三相四桥臂逆变系统无论应对平衡负载还是不平衡负载,均可输出波形较为良好的三相输出电压与电流,从而满足系统要求[1]。
1三相四桥臂建模
假设电网模拟器整流侧输出电流作为逆变器的直流电源Udc,电源电流Idc,S1~S8八个IGBT开关器件。逆变器输出侧三相滤波电感均为L,第四桥臂电感为Ln,三相滤波电容为C,电感电流分别为Ila,Ilb,Ilc和Iln,三相输出电压分别为Ua,Ub,Uc,第四桥臂输出电压为Un,负载为被测设备,一般可为三相平衡、不平衡、线性或非线性负载。
图1所示三相四桥臂逆变器平均模型[2]如图2,根据基尔霍夫定理[3],三相输出电压可以表示:
图1电网模拟器逆变侧拓扑
式中,dan,dbn,dcn分别表示三桥臂相对于第四桥臂的占空比[2]。
图2平均大信号模型
根据图4-2平均放大模型[4]以及基尔霍夫电压定律(KVL)、基尔霍夫电流定律(KCL)可以得到下式。
式(3)中,r为A、B、C三相的死区效应、线路损耗和电感的等效电阻,rn为第四桥臂的等效电阻。
2系统仿真分析
图3三相四桥臂模型
设计一台5kW的实验样机。交流电源输出电压有效值范围设定为0~300V,额定电压为220V(rms),额定频率50Hz。滤波器参数为L=2mH,C=25μF。功率器件采用IGBT,开关频率为10kHz。下面将上述参数代入系统仿真模型中分析逆变器在不平衡负载状态下的运行效果。
三相四桥臂逆变电源具有很强的带不平衡负载能力,由于它提供了第四个桥臂,使得逆变电源可以输出三个独立的电压,补偿滤波电感以及中线电感上的负序和零序压降,从而可以维持负载侧的三相电压对称。但是这需要合适的控制策略来得到精确的补偿值。图5-4为带线性不平衡负载(A相阻性满载B、C相空载)时的三相输出电压波形,图5-5给出了此时的三相输出电压的负序和零序分量,负序和零序分量的峰值均小于2V,负序和零序不平衡度均为1.23%左右。
图4A相阻性满载B、C相空载时的三相输出电压的负序和零序分量
3结论
通过三相四桥臂逆变器的仿真,能够得出逆变系统在不平衡负载下也可以保证三相电压的平衡,且系统具有良好的动态性能及稳态性能。最后通过硬件实验进行了验证,验证了系统的性能能够满足要求。
参考文献:
[1]刘振亚著.中国电力与能源[M].北京:中国电力出版社,2012:104-105.
[2]BorsalaniJ.,DastfanA..Decoupledphasevoltagescontrolofthreephasefour-legvoltagesourceinverterviastatefeedback.In:2ndInternationalConferenceonComputerandKnowledgeEngineering(ICCKE),2012.71-76
[3]马海啸,邵宇,龚春英.三相四桥臂逆变器的非数字化控制策略[J].电工技术学报,2014,29(12):27-31
[4]王亚威.基于双闭环准比例谐振控制的逆变器研究[D].大连理工大学.2014:16-20