海气交换论文_王建成

导读:本文包含了海气交换论文开题报告文献综述、选题提纲参考文献及外文文献翻译,主要关键词:通量,甲烷,氧化亚氮,气态,东海,特征,湍流。

海气交换论文文献综述

王建成[1](2018)在《南极内陆和海洋边界层大气汞传输和气态汞海—气交换过程研究》一文中研究指出汞(Hg)是有毒性的物质,由于其广泛的存在,并且具备长距离传输的属性,受到了全球的关注。极地地区很高的汞富集现象表明人类活动产生的汞可以通过传播影响到如此偏远的地区。汞在冰/雪-气界面的转化和交换过程有其独特机制,气候变化也将对其产生影响。汞的海-气交换过程对于汞的全球循环过程来说至关重要。海洋释放的汞不仅是对大气的一个重要补充,也促使了它更长距离的传播。本文重点关注南极内陆和海洋边界层中大气汞分布特征、传输机制以及气态汞海-气交换过程,研究区域涵盖南极内陆、南大洋以及印度-太平洋海域。主要内容和结论如下:(1)2012年12月16日至2013年2月6日,调查了自南极沿岸到内陆断面气态总汞(TGM)的分布特征。TGM分布范围为0.32-2.34 ngm-3,平均浓度为0.91±0.33ngm-3。沿岸受到海洋释放影响,内陆地区(海拔>3000m)呈现出高值。受地形和氧化还原条件影响,内陆平缓地区(距海岸290-800 km)TGM浓度值要高于陡坡区(距海岸800-1000 km)。昆仑站TGM浓度呈现出显着的昼夜差异,午夜最低而正午最高。这种昼夜特征可归因于雪中气态汞的再释放,氧化损耗以及混合层的对流过程。(2)2014年12月13日-2015年2月1日,随雪龙船观测了南大洋周边大气中气态汞(GEM)及表层海水中溶解性气态汞(DGM)的浓度。南大洋夏季海洋边界层中GEM浓度范围:0.39-1.92 ngm-3,均值:0.93 ±0.19 ngm-3;表层海水中DGM浓度范围:7.0-75.9 pgL-1,均值:23.7± 13.2pgL-1。边界层中GEM出现的低值(<0.6 ng m-3)揭示了南大洋夏季也可能发生大气汞损耗事件,另外还会受到南极内陆下降风气团的影响。海冰融化将导致更多的汞进入南大洋海水中并被重新释放到大气中。南大洋在夏季会释放气态汞到大气中。(3)发现在中央印度-太平洋地区赤道附近海域海洋边界层(MBL)中GEM浓度有明显的升高趋势。排除人为活动排放、火山活动以及生物燃烧的影响,这种持续性的GEM升高很可能和海洋释放联系在一起。而表层水体中DGM含量在赤道地区也相应升高,更是佐证了这一点。巨大而强烈的降水活动给当地海表带来大量的汞的沉降,在强烈光照条件下,容易被还原并重新进入大气。这揭示赤道附近地区很可能在一定程度上类似于气态汞传输过程中“中转站”,起着“跳板”的作用,帮助汞的再次传播。(4)开发了一套表层海水DGM船基走航连续分析系统,并得到很好的应用。获得了南大洋和西太平洋海域表层海水DGM浓度,结合GEM浓度、表层海水温度(SST)和风速(SPD)数据,计算了气态汞海-气交换通量。气态汞的海-气交换通量主要受DGM浓度和风速影响。另外,各不同海域报道的表层海水DGM分布和气态汞海-气交换通量数据时空差异十分的大,未来更多的研究是必要的。(本文来源于《中国科学技术大学》期刊2018-05-01)

臧昆鹏[2](2018)在《渤海季节性耗氧海域甲烷浓度和海—气交换通量的季节演变特征及调控过程》一文中研究指出渤海是我国内海,面积约7.7万km~2,平均水深约18 m,叁面环陆,仅东部通过渤海海峡与北黄海相通。初步调查显示,夏季渤海是大气CH_4的源,但关于水体中溶解态CH_4的源汇过程,浓度时空分布和海-气交换通量季节演变特征及调控机制的研究尚不充分。尤其是近年来,在人为活动和自然过程耦合作用下,渤海西部底层海水呈逐年增强的季节性耗氧状况,影响面积仅次于长江口低氧区,溶解氧浓度最低值已接近国际公认的低氧限值。针对渤海季节性耗氧这一新生态环境现象,本研究对耗氧海域海水中溶解态CH_4的源汇过程,浓度和海-气交换通量时空分布特征及调控过程开展了针对性观测和实验研究。同时,对耗氧海域潜在的含CH_4气泡释放现象,本研究在大连湾近岸开展了含CH_4气泡释放速率及调控因素的预研究工作。本研究有助于进一步丰富近海海域CH_4的生物地球化学循环过程基础数据和资料,更清晰地说明人为活动对近海耗氧海域CH_4源汇过程的影响,进而有的放矢地采取措施,改善近海生态环境,逐步减缓近海CH_4源的人为增强,以更高效地缓解人为活动对全球气候环境变化的影响。通过自主设计、集成和优化测试,本研究建立了适用于海表大气CH_4走航连续观测的船基光腔衰荡光谱观测系统和方法。该系统2011年至2017年最大漂移小于0.1%,精密度小于0.03%,准确度小于0.08%,均优于世界气象组织全球大气观测网对大气CH_4的观测数据质量控制要求。同时建立了适用于离散海水样品中溶解态CH_4浓度测定的顶空平衡-双通道气相色谱系统和方法。该系统对溶解态CH_4观测结果的精密度小于0.80%,准确度小于1.50%,达到国内外先进水平。此外,还改进研发了适用于近岸浅海含CH_4气泡收集工作的自动化倒置漏斗采集器和沉积物产CH_4速率培养系统及沉积物间隙水提取设备及方法,为开展现场观测、获取高质量的原始观测数据奠定了坚实的基础。利用上述仪器设备,在渤海开展了海表大气、海水和沉积物等介质中CH_4及相关水文气象要素的现场观测,并实现春、夏和冬季的海表大气CH_4和海水中溶解态CH_4的同步观测。基于现场观测和实验数据综合分析发现,观测期间,沉积物很可能是渤海耗氧海域水体中溶解态CH_4的主要来源,底层海水为溶解态CH_4的弱汇。渤海耗氧海域表层海水中溶解态CH_4浓度整体呈初秋季节最高,冬季最低,其他季节居中的季节演变特征,但水柱中溶解态CH_4浓度呈夏季垂直差异最大,深秋和冬季垂直分布均匀的分布特征,其最直接的调控因素应是季节性水体层化和海底地形及涡流导致的水动力环境。夏季渤海底层海水中溶解态CH_4浓度上升和耗氧过程并无直接的因果关系,两者均为人为活动和自然过程导致沉积物有机质含量逐年增加的结果,但耗氧过程可能在一定程度上消弱溶解态CH_4的有氧氧化消耗速率。因此导致夏季渤海耗氧海域可能呈CH_4―源增强而汇减弱‖的新特征。而夏季渤海耗氧海域底层海水中溶解态CH_4的蓄积效应可能是一直存在的自然过程,但受人为活动对溶解态CH_4源汇过程的影响,其浓度时空分布表现出更剧烈的季节演变特征。基于全球大气CH_4本底浓度年均值计算观测海域的溶解态CH_4饱和度和海-气交换通量比基于现场实测大气CH_4浓度计算的结果分别偏高14%和15%。后者计算结果更能代表观测海域真实且准确的结果。因此,本研究将海-气CH_4交换通量观测研究方法优化改进为实施海-气CH_4同步观测。观测期内,渤海耗氧海域海水溶解态CH_4均呈过饱和状态,表现为大气CH_4的源。耗氧海域海-气CH_4交换通量在季节性水动力环境,风力,海水温度和盐度等因素调控下,呈显着的季节演变特征,其中,季节性水动力环境可能是主要调控因素。海-气CH_4交换通量的具体演变特征为由春季至夏季,受温跃层主导作用,海-气CH_4交换通量逐渐下降至全年最低,大量溶解态CH_4蓄积于底层海水中。至夏秋季节转换时期,随着温跃层快速消退,底层海水中蓄积的溶解态CH_4迅速交换、扩散至表层海水,进而释放进入大气,导致初秋季节海-气CH_4交换通量达到全年最高。进入冬季,随着底层水体中蓄积的CH_4释放结束,海-气CH_4交换通量下降至全年最低。因此,耗氧海域海-气CH_4交换通量总体呈初秋季节最高,夏季和冬季较低,春季居中的季节演变特征,其中,初秋季节耗氧海域的脉冲式释放通量最高达37.9μmol/m~2/d。根据国内外观测研究报道及渤海耗氧状况逐年加剧的实际情况,耗氧海域可能存在或潜在可形成含CH_4气泡释放现象。因此本研究利用自行设计研发的倒置漏斗型气泡收集器及水下摄像机等设备,于2016年夏季在大连湾近岸海域开展了含CH_4气泡及相关参数的现场观测。结果显示,气泡样品中CH_4的含量高达0.378 mol/mol。受人为活动的强烈影响,近岸污染海域释放的气泡主要组分包括CO_2、CH_4、N_2O和水汽等组分。气泡释放的主要影响因素为潮汐,海水温度及沉积物中有机质含量等。其中,潮汐通过周期性改变沉积物表面压力和水体混合稀释过程影响气泡的形成和释放速率,温度通过影响CH_4产生速率及其溶解度调节气泡生成和释放,而人为活动导致沉积物中有机质含量也直接影响CH_4的产生速率。此外,单位面积海域的含CH_4气泡释放通量是溶解态CH_4海-气扩散通量的约14.8倍,且含CH_4气泡过程可直接影响局地大气CH_4混合比分布。因此,含CH_4气泡释放海域是大气CH_4的源,应予重视并开展深入观测研究。(本文来源于《中国气象科学研究院》期刊2018-04-01)

程天宇,高郭平,胡登辉,黄菊,张春玲[3](2018)在《2016年冬末长江口及邻近海域海气CO_2交换特征分析》一文中研究指出基于2016年3月对长江口及邻近海域的调查,剖析该海域CO_2分压及相关参数的区域分布特征,估算其海-气界面CO_2的交换通量,并探讨了源/汇分布特征背后的物理机制。研究表明,调查区域海表p CO_2变化范围为321~575μatm,整体呈现出近岸高、离岸低的分布趋势。至冬季末期,海表p CO_2分布主要受控于低温低盐高p CO_2的河口水与高温高盐低p CO_2的东海陆架水的水团混合影响,水体垂直混合作用对海表p CO_2影响不大。长江口及邻近海域冬季整体表现为大气CO_2的弱汇,通量值为-4.43±7.41mmol/m2/d。从区域碳汇强度看来,近岸长江冲淡水区近乎与大气保持平衡,黄东海混合水区和台湾暖流区表现为大气CO_2的中/强汇,是冬季末期海洋吸收大气CO_2的主要贡献区域。(本文来源于《海洋环境科学》期刊2018年02期)

邱文浩[4](2016)在《考虑大气稳定度和海气交换的海上风机叶片疲劳特性研究》一文中研究指出由于海面场地开旷,海上环境对风场干扰小,风场稳定,海上风能资源丰富。因此,国家近几年对海上风电项目加大了发展推广力度,同时对海上风力机的性能也提出了更高的要求。疲劳破坏是风力机的主要破坏形式,本文深入研究风力机周围风场特性,通过考虑大气稳定度和海气交换作用对海面风场平均和脉动特性产生的影响,以及风机叶片旋转效应对风力机动力载荷特性产生的影响,进而对海上风力机的疲劳特性展开研究。对海上风力机进行疲劳特性分析的关键是准确地刻画出风力机周围风场平均和脉动特性,众所周知,平均风速剖面和脉动风速谱是描述风场特性的重要因素,现场实测则是风特性分析的重要途径,本文基于近海区域常态风和台风的实测资料,探讨了大气稳定度和海气交换作用对平均风速剖面的影响,通过对对数律平均风剖面模型进行修正,建立了近海风场平均风剖面的模型。同时,为了剖析新模型的各个参数对风速剖面的影响,对模型参数进行了敏感性分析。对风力机叶片,本文从频域角度出发,通过研究旋转效应对风力机叶片的脉动风速谱的影响,推导了叶片上任意一点的旋转Fourier自谱和互谱的表达式。基于对比实测数据,确定旋转Fourier谱中的脉动风速谱和相干函数参数,同时,对旋转Fourier谱参数进行了敏感性分析,剖析谱参数对旋转Fourier谱产生的影响。根据对海上风力机风场的研究成果,揭示了考虑大气稳定度和海气交换作用下风力机的疲劳特性。首先基于海面平均风速剖面和旋转Fourier谱模型,通过谐波迭加法模拟出风力机周围的风场特性。然后通过ABAQUS软件建立风力机模型,通过考虑叶素-动量理论确定了风力机的输入风荷载,从而进行动力时程分析得到载荷谱。最后基于疲劳性能S-N曲线,通过雨流计数法统计得到等效载荷谱,采用线性损伤累积法计算其疲劳寿命。(本文来源于《哈尔滨工业大学》期刊2016-07-01)

韩玉,张桂玲[5](2015)在《春季西北太平洋水体中甲烷和氧化亚氮的分布及海气交换通量》一文中研究指出于2010年5—6月搭乘日本KH10-1航次,对西北太平洋两个不同深度站位甲烷(CH4)和氧化亚氮(N2O)的垂直分布及海气交换通量进行了研究。结果显示:研究海域表层海水中CH4和N2O浓度分别为(2.55±0.22)nmol/L和(7.50±1.11)nmol/L,饱和度分别为126%和116%,均处于轻度过饱和状态。在垂直方向上,CH4浓度分布呈现次表层极大的特征,次表层以下CH4浓度随深度增加逐渐减小。CH4次表层极大值可能是由于细菌利用甲基化合物进行好氧产生和在悬浮颗粒物、浮游动物或其他海洋生物肠道内厌氧微环境产生的综合作用造成的。N2O浓度随深度的增加而增大,在跃层下部达到最大值,N2O与溶解氧的垂直分布呈镜像关系。水体中N2O主要通过硝化过程产生。利用LM86和W92公式计算得到CH4的海气交换通量分别为(0.76±0.57)μmol/(m2·d)和(1.57±0.67)μmol/(m2·d),N2O的海气交换通量分别为(1.96±0.24)μmol/(m2·d)和(3.08±0.38)μmol/(m2·d),因此西北太平洋是大气CH4和N2O的净源。(本文来源于《海洋与湖沼》期刊2015年02期)

马啸,张桂玲,曹兴朋,宋国栋,王岚[6](2014)在《春季东海溶存氧化亚氮的分布和海气交换通量》一文中研究指出于2011年5至6月在东海采集不同深度海水样品,研究了其中溶存氧化亚氮(N2O)的分布并估算其海-气交换通量。结果表明,春季东海表层海水中溶存N2O浓度范围为6.31~11.88 nmol/L,平均值为(9.13±1.45)nmol/L;底层海水中N2O浓度范围为7.53~39.75 nmol/L,平均值为(13.71±7.76)nmol/L。随着深度的增加,N2O浓度逐渐升高。温度是影响春季东海N2O分布的主要因素,N2O浓度与温度呈负相关关系。长江冲淡水和黑潮水是东海N2O的重要来源。东海表层海水中N2O的饱和度范围为92.5%~139.3%,平均值为118.5%±10.3%,绝大多数站位都处于过饱和状态,因此,春季东海是大气N2O的净源。利用LM86公式和W92公式求得东海的海-气交换通量分别为(4.96±6.12)μmol/(m2·d)和(10.25±17.18)μmol/(m2·d),初步估算出东海年释放N2O通量约为0.061~0.127 Tg/a,占全球海洋释放总量的2.0%,远高于其所占的面积比0.2%。(本文来源于《海洋科学》期刊2014年02期)

张麋鸣,陈立奇,汪建君[7](2013)在《南大洋二甲基硫海—气交换过程研究进展》一文中研究指出二甲基硫(DMS)是一种重要的海洋生源硫化物,通过海—气交换进入大气后生成生物源硫酸盐气溶胶从而对气候产生影响。海洋是大气DMS的主要源地,海洋大气中约90%的DMS来自海洋。南大洋占世界大洋面积的20%,是全球DMS重要的源之一。相较其他海域,南大洋表层海水DMS存在显着的时空变化。由于南大洋复杂的水文环境、多变的海冰情况和受多种生物活动作用的影响,完全了解这一区域DMS海—气交换过程及其控制因素变得更加复杂、困难。此外,开展DMS的冰—气交换过程及其控制因素的研究也很有意义。为了便于今后在极区开展DMS海—气交换过程的研究,深入探究极区DMS的生物地球化学过程。因此,对南大洋DMS海—气通量的估算方法进行讨论,分析南大洋表层海水DMS的分布特征及南大洋DMS海—气输送通量,对南大洋DMS海—气交换过程的控制因素进行探讨。(本文来源于《地球科学进展》期刊2013年09期)

曹兴朋,张桂玲,马啸,张国玲,刘素美[8](2013)在《春季东、黄海溶解甲烷的分布和海气交换通量》一文中研究指出于2011年3月17日~4月6日对东、黄海海域进行了大面调查,采集了45个站位不同深度的海水样品,对溶解甲烷(CH4)浓度进行了测定,并估算了其海-气交换通量.结果表明,东、黄海表层海水中溶解甲烷的浓度变化范围是2.39~29.67nmol.L-1,底层海水中甲烷浓度范围是2.63~30.63 nmol.L-1,底层浓度略高于表层,表明底层水体或沉积物中存在甲烷的源.春季东、黄海海域表、底层溶解甲烷的分布特征基本一致,即从近岸向远海逐渐降低,主要受长江冲淡水输入和黑潮水入侵的影响.春季东、黄海海域表层海水中CH4饱和度为93%~1 038%.利用Liss and Merlivat公式(LM86)、Wanninkhof公式(W92)和现场测定的风速估算出春季东、黄海海域CH4的海-气交换通量分别为(2.85±5.11)μmol.(m2.d)-1和(5.18±9.99)μmol.(m2.d)-1,根据本研究结果和文献数据初步估算出东海和黄海年释放甲烷量分别为7.05×10-2~12.0×10-2Tg.a-1和1.17×10-2~2.20×10-2Tg.a-1.春季东、黄海海域表层海水中CH4均呈过饱和状态,是大气中CH4的净源.(本文来源于《环境科学》期刊2013年07期)

段自强[9](2013)在《利用涡动相关法研究海洋大气边界层湍流特征与海气物质交换》一文中研究指出海洋大气边界层湍流运动特征以及海洋与大气之间的物质交换是海气相互作用研究的重要内容,对理解海洋在全球气候变化中的作用非常重要。涡动相关法作为大气湍流运动的一种直接观测手段,在海气相互作用研究中受到越来越多的重视,但是由于海洋观测环境的特殊性,目前对海气物质交换的研究还很不充分,特别是海气CO_2湍流通量的观测还存在一定的不确定性,因此,进一步研究涡动相关系统在海洋上的应用以及后期的资料处理很有必要。利用2006年12月30日至2007年1月16日在我国北黄海海域观测得到的船载涡动相关资料研究海洋大气边界层湍流特征,并对比分析了定点和走航观测条件下的结果。利用2007年10月13日至26日在我国北黄海海域的船载涡动相关系统观测资料,从功率谱的角度分析了CO_2湍流通量观测结果的不确定性,并提出相应的校正方法以减小不确定性。2011年5月1日至5日,采用由超声风速仪与FMPS组成的涡动相关系统在千里岩岛对纳米气溶胶粒子通量进行观测研究。主要得到以下结论:(1)定点和走航观测资料中,受船体运动影响,风速脉动功率谱有异常高值,经过船体运动校正以后可以去除。定点观测资料在校正前后其它频率区间没有明显变化,而走航观测资料在校正以后出现低频谱值增大的现象,这可能是因为船体平移的低频变化未被完全去除,姿态校正时的坐标旋转使其在其它方向产生分量。(2)将走航观测资料得到的大气边界层湍流运动特征与定点观测资料、其它观测研究的结果相比,可以发现,对无量纲标准差与稳定度之间的相似函数而言,其符合相似理论的1/3次方定律,而且与定点资料、陆地以及其它海域下垫面条件下得到的相似函数可比。对于湍流强度、曳力系数等参数,走航和定点观测资料计算结果的大小存在差异,但是它们与风速之间具有一致的变化趋势。总体而言,走航观测方式可以用于海洋大气边界层中湍流特征的观测。(3)涡动相关系统应用于海气通量观测时可以得到比较合理的动量通量、感热通量以及潜热通量,但是海气CO2通量的观测结果存在一定的不确定性,主要表现为观测结果的量级偏大。本文从湍流方差谱分布的角度对海气CO2通量观测结果的不确定性进行分析,结果表明,水汽和温度的功率谱在频率域上分布特征相似,但是与CO2功率谱之间存在差异,主要表现为低频区对CO2脉动方差的贡献相对较大,而高频区的贡献则相对较小。经过分析发现,交叉感应引起的噪音信号主要存在于低频(<0.8Hz),而高频区受交叉感应的影响相对较小这很有可能是造成功率谱之间存在差异的原因,同时也是CO2通量观测结果偏大的原因。(4)根据相似理论,某一频率区间湍流运动对CO2通量的贡献与对水汽的贡献相等,在此基础之上,再结合对交叉感应噪音信号分布特征的认识,我们提出了一种利用受交叉感应影响较小的高频区(0.8-1.5Hz)C02脉动信号校正C02湍流通量的方法。计算结果显示,北黄海海域秋季航次海气CO2通量的直接计算结果为-0.23mg m-2s-,而经过校正以后的结果为-0.039mg m-2s-。这说明交叉感应引起的噪音信号可占观测信号的80%左右,是海气CO2通量观测结果不确定的主要影响因素,经过校正以后可以得到比较合理的结果。(5)千里岩纳米气溶胶粒子浓度的观测资料显示,观测区域内5月3日发生一次新粒子生成过程,生成初期,新粒子的粒径在20nm以下,随后可逐渐增长至50nm左右。新粒子生成时气象条件出现的最明显变化是风向由偏南风转变为偏北风,新粒子的生成可能与之有关。涡动相关法观测的纳米气溶胶粒子通量的计算结果为:新粒子生成时期,各粒径段粒子通量的平均值为6.7×106m-2s-相应中位数平均值为5.8×106m-2s-1,非新粒子生成时期,各粒径段粒子通量的平均值为2.7×106m-2s-1,相应中位数平均值为2.1×106m-2s-1。整个观测期间,粒子的传输方向各有正负,且粒子通量向上的样本所占比例要高于通量向下的样本所占比例。与非新粒子生成时期相比,新粒子生成时,粒子通量向上的样本所占比例更大,这可能与新粒子的生成发生在低层大气有关。(本文来源于《中国海洋大学》期刊2013-06-04)

于潭[10](2013)在《海—气二氧化碳交换速度和通量的遥感反演方法研究》一文中研究指出海-气CO_2通量是全球气候变化的重要控制因子之一,也是目前国际研究的热点。大量的现场实测和相关研究表明, CO_2交换速度不仅与风速有关,还与波浪、海-气边界层厚度、大气层化等密切相关。本文从遥感角度,针对海-气界面CO_2交换速度和通量的反演算法开展研究,利用高度计、散射计等卫星数据重点研究了CO_2交换速度和通量的现有计算方法的不确定性,以及波浪破碎、非破碎和波陡等不同因子对CO_2交换速度和通量的影响,取得如下主要进展:(1)提出了一个利用高度计数据反演空气摩擦速度的新公式,并且利用26个不同的交换速度公式,使用高度计数据,计算了2000年的CO_2交换速度以及通量的不确定性。发现由于交换速度公式的不同导致了估算全球CO_2交换速度以及通量非常大的不确定性。全球月平均交换速度之间的最大差异为27.70cm h~(-1),通量为6.24PgCyear~(-1),4°纬度带平均的CO_2交换速度的最大差异是70.37cm h~(-1),通量是0.58PgCyear~(-1)。计算得到经过面积加权以及施密特数校正之后的2000年全球平均交换速度是27.33±9.75cm h~(-1),通量是2.77±1.02PgCyear~(-1)。(2)使用一个与Ku-波段后向散射截面、有效波高和风速有关的函数,实现了对大范围、长时间序列交换速度的反演,同时考虑了风速以及波浪状态对交换速度的影响。计算了交换速度的全球分布以及季节变化,并进行了比对和分析;计算了19年CO_2海-气交换速度的变化趋势,有一个0.01cm h~(-1)每月的增速。计算得到经过面积加权以及施密特数校正之后的19年平均全球平均交换速度是36.14±1.62cm h~(-1)。(3)通过对CO_2交换速度公式的比较和分析,提出了一个利用高度计数据计算交换速度的新公式,该公式利用白帽覆盖率来区分波浪破碎以及非破碎部分对交换速度的贡献。计算和分析了交换速度和通量的全球分布以及季节分布。计算了17年CO_2海-气交换速度和通量的变化趋势,分别有0.725cm h~(-1)和0.0068PgC每年的增速。计算得到经过面积加权以及施密特数校正之后的17年平均全球平均交换速度为21.26cm h~(-1),通量为每年2.58PgC。(4)提出了一个利用ERS-2散射计数据计算交换速度的新方法,新方法同时考虑了风速和波陡。波陡由ERS-2散射计数据通过神经网络方法获得。文中给出的新公式与已有的风速参数化公式一致性较好,已有风速公式的变化可以用波陡的变化来反映,这反映了不同波浪场对交换速度以及通量的影响,该模型解释了不确定性的部分原因。计算了交换速度和通量的全球分布以及季节分布并且分析了他们的分布规律。经过面积加权以及施密特数校正之后得到了全球平均交换速度为30cm h~(-1),从大气进入海洋的净通量为1.77PgC。(本文来源于《中国科学院研究生院(海洋研究所)》期刊2013-05-01)

海气交换论文开题报告

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

渤海是我国内海,面积约7.7万km~2,平均水深约18 m,叁面环陆,仅东部通过渤海海峡与北黄海相通。初步调查显示,夏季渤海是大气CH_4的源,但关于水体中溶解态CH_4的源汇过程,浓度时空分布和海-气交换通量季节演变特征及调控机制的研究尚不充分。尤其是近年来,在人为活动和自然过程耦合作用下,渤海西部底层海水呈逐年增强的季节性耗氧状况,影响面积仅次于长江口低氧区,溶解氧浓度最低值已接近国际公认的低氧限值。针对渤海季节性耗氧这一新生态环境现象,本研究对耗氧海域海水中溶解态CH_4的源汇过程,浓度和海-气交换通量时空分布特征及调控过程开展了针对性观测和实验研究。同时,对耗氧海域潜在的含CH_4气泡释放现象,本研究在大连湾近岸开展了含CH_4气泡释放速率及调控因素的预研究工作。本研究有助于进一步丰富近海海域CH_4的生物地球化学循环过程基础数据和资料,更清晰地说明人为活动对近海耗氧海域CH_4源汇过程的影响,进而有的放矢地采取措施,改善近海生态环境,逐步减缓近海CH_4源的人为增强,以更高效地缓解人为活动对全球气候环境变化的影响。通过自主设计、集成和优化测试,本研究建立了适用于海表大气CH_4走航连续观测的船基光腔衰荡光谱观测系统和方法。该系统2011年至2017年最大漂移小于0.1%,精密度小于0.03%,准确度小于0.08%,均优于世界气象组织全球大气观测网对大气CH_4的观测数据质量控制要求。同时建立了适用于离散海水样品中溶解态CH_4浓度测定的顶空平衡-双通道气相色谱系统和方法。该系统对溶解态CH_4观测结果的精密度小于0.80%,准确度小于1.50%,达到国内外先进水平。此外,还改进研发了适用于近岸浅海含CH_4气泡收集工作的自动化倒置漏斗采集器和沉积物产CH_4速率培养系统及沉积物间隙水提取设备及方法,为开展现场观测、获取高质量的原始观测数据奠定了坚实的基础。利用上述仪器设备,在渤海开展了海表大气、海水和沉积物等介质中CH_4及相关水文气象要素的现场观测,并实现春、夏和冬季的海表大气CH_4和海水中溶解态CH_4的同步观测。基于现场观测和实验数据综合分析发现,观测期间,沉积物很可能是渤海耗氧海域水体中溶解态CH_4的主要来源,底层海水为溶解态CH_4的弱汇。渤海耗氧海域表层海水中溶解态CH_4浓度整体呈初秋季节最高,冬季最低,其他季节居中的季节演变特征,但水柱中溶解态CH_4浓度呈夏季垂直差异最大,深秋和冬季垂直分布均匀的分布特征,其最直接的调控因素应是季节性水体层化和海底地形及涡流导致的水动力环境。夏季渤海底层海水中溶解态CH_4浓度上升和耗氧过程并无直接的因果关系,两者均为人为活动和自然过程导致沉积物有机质含量逐年增加的结果,但耗氧过程可能在一定程度上消弱溶解态CH_4的有氧氧化消耗速率。因此导致夏季渤海耗氧海域可能呈CH_4―源增强而汇减弱‖的新特征。而夏季渤海耗氧海域底层海水中溶解态CH_4的蓄积效应可能是一直存在的自然过程,但受人为活动对溶解态CH_4源汇过程的影响,其浓度时空分布表现出更剧烈的季节演变特征。基于全球大气CH_4本底浓度年均值计算观测海域的溶解态CH_4饱和度和海-气交换通量比基于现场实测大气CH_4浓度计算的结果分别偏高14%和15%。后者计算结果更能代表观测海域真实且准确的结果。因此,本研究将海-气CH_4交换通量观测研究方法优化改进为实施海-气CH_4同步观测。观测期内,渤海耗氧海域海水溶解态CH_4均呈过饱和状态,表现为大气CH_4的源。耗氧海域海-气CH_4交换通量在季节性水动力环境,风力,海水温度和盐度等因素调控下,呈显着的季节演变特征,其中,季节性水动力环境可能是主要调控因素。海-气CH_4交换通量的具体演变特征为由春季至夏季,受温跃层主导作用,海-气CH_4交换通量逐渐下降至全年最低,大量溶解态CH_4蓄积于底层海水中。至夏秋季节转换时期,随着温跃层快速消退,底层海水中蓄积的溶解态CH_4迅速交换、扩散至表层海水,进而释放进入大气,导致初秋季节海-气CH_4交换通量达到全年最高。进入冬季,随着底层水体中蓄积的CH_4释放结束,海-气CH_4交换通量下降至全年最低。因此,耗氧海域海-气CH_4交换通量总体呈初秋季节最高,夏季和冬季较低,春季居中的季节演变特征,其中,初秋季节耗氧海域的脉冲式释放通量最高达37.9μmol/m~2/d。根据国内外观测研究报道及渤海耗氧状况逐年加剧的实际情况,耗氧海域可能存在或潜在可形成含CH_4气泡释放现象。因此本研究利用自行设计研发的倒置漏斗型气泡收集器及水下摄像机等设备,于2016年夏季在大连湾近岸海域开展了含CH_4气泡及相关参数的现场观测。结果显示,气泡样品中CH_4的含量高达0.378 mol/mol。受人为活动的强烈影响,近岸污染海域释放的气泡主要组分包括CO_2、CH_4、N_2O和水汽等组分。气泡释放的主要影响因素为潮汐,海水温度及沉积物中有机质含量等。其中,潮汐通过周期性改变沉积物表面压力和水体混合稀释过程影响气泡的形成和释放速率,温度通过影响CH_4产生速率及其溶解度调节气泡生成和释放,而人为活动导致沉积物中有机质含量也直接影响CH_4的产生速率。此外,单位面积海域的含CH_4气泡释放通量是溶解态CH_4海-气扩散通量的约14.8倍,且含CH_4气泡过程可直接影响局地大气CH_4混合比分布。因此,含CH_4气泡释放海域是大气CH_4的源,应予重视并开展深入观测研究。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

海气交换论文参考文献

[1].王建成.南极内陆和海洋边界层大气汞传输和气态汞海—气交换过程研究[D].中国科学技术大学.2018

[2].臧昆鹏.渤海季节性耗氧海域甲烷浓度和海—气交换通量的季节演变特征及调控过程[D].中国气象科学研究院.2018

[3].程天宇,高郭平,胡登辉,黄菊,张春玲.2016年冬末长江口及邻近海域海气CO_2交换特征分析[J].海洋环境科学.2018

[4].邱文浩.考虑大气稳定度和海气交换的海上风机叶片疲劳特性研究[D].哈尔滨工业大学.2016

[5].韩玉,张桂玲.春季西北太平洋水体中甲烷和氧化亚氮的分布及海气交换通量[J].海洋与湖沼.2015

[6].马啸,张桂玲,曹兴朋,宋国栋,王岚.春季东海溶存氧化亚氮的分布和海气交换通量[J].海洋科学.2014

[7].张麋鸣,陈立奇,汪建君.南大洋二甲基硫海—气交换过程研究进展[J].地球科学进展.2013

[8].曹兴朋,张桂玲,马啸,张国玲,刘素美.春季东、黄海溶解甲烷的分布和海气交换通量[J].环境科学.2013

[9].段自强.利用涡动相关法研究海洋大气边界层湍流特征与海气物质交换[D].中国海洋大学.2013

[10].于潭.海—气二氧化碳交换速度和通量的遥感反演方法研究[D].中国科学院研究生院(海洋研究所).2013

论文知识图

水平计算网格示意图受台风“梅花“影响后洋面SST降温分布天气和气候模式预测现状示意图(引自Bé...东海黑潮示意图,引自Johnsetal.(200...利用LM-86方程(a)和W-92方程(b)计算的~...月平均风速(a和b,单位:m/s)和试验W...

标签:;  ;  ;  ;  ;  ;  ;  

海气交换论文_王建成
下载Doc文档

猜你喜欢