导读:本文包含了时间序列云图论文开题报告文献综述、选题提纲参考文献及外文文献翻译,主要关键词:云量,序列,时间,云图,分解,小波,模型。
时间序列云图论文文献综述
王喆文,黄鹏,林友明[1](2016)在《利用小波分解的时间序列云量预测方法》一文中研究指出针对传统模型对高分辨率云量时间序列数据适用性差、拟合效果较差以及预测结果准确度低的问题,提出了一种基于小波分解的云量时间序列组合模型预测方法。该方法可以有效提取高分辨率云量时间序列数据的低频趋势序列信息和高频随机序列信息,利用波动特征与随机项扰动纠正,对未来一段时期的云量分布进行预测。试验结果表明,该预测方法改进了传统方法对高分辨率数据适用性较差的问题,能够较为准确地拟合时间序列数据的变化规律,提高了预测准确度,为较长周期的卫星成像数据的选取提供重要的参考依据。(本文来源于《遥感信息》期刊2016年04期)
王志信,黄鹏,林友明,贾秀鹏[2](2014)在《面向遥感卫星数据获取应用的时间序列云量预测方法》一文中研究指出针对目前没有能够直接满足遥感数据获取需求相关的云量预测方法的问题,本文提出了一种利用时间序列分析预测方法对云量进行预测的方法。在云量特征分类的基础上,整合ARMA、ARIMA和SARIMA 3种模型对云量进行预测,并得到了满意的预测结果。根据云量预测结果参考信息,选择云量覆盖较少的时间段进行卫星成像规划,有利于更合理的进行卫星成像规划,对满足遥感数据获取需求有重要意义。(本文来源于《遥感信息》期刊2014年03期)
时间序列云图论文开题报告
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
针对目前没有能够直接满足遥感数据获取需求相关的云量预测方法的问题,本文提出了一种利用时间序列分析预测方法对云量进行预测的方法。在云量特征分类的基础上,整合ARMA、ARIMA和SARIMA 3种模型对云量进行预测,并得到了满意的预测结果。根据云量预测结果参考信息,选择云量覆盖较少的时间段进行卫星成像规划,有利于更合理的进行卫星成像规划,对满足遥感数据获取需求有重要意义。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
时间序列云图论文参考文献
[1].王喆文,黄鹏,林友明.利用小波分解的时间序列云量预测方法[J].遥感信息.2016
[2].王志信,黄鹏,林友明,贾秀鹏.面向遥感卫星数据获取应用的时间序列云量预测方法[J].遥感信息.2014