论文摘要
为弥补茶叶品质感官审评存在的缺陷,利用计算机视觉技术对茶叶品质进行快速无损评价研究。以碧螺春绿茶为对象,依据专家感官审评结果,将茶样分成4个等级;采用中值滤波及拉普拉斯算子对茶样图像进行预处理,并提取预处理后的茶样图像的颜色特征和纹理特征以表征茶叶图像的外形特征,利用随机森林算法对茶叶外形特征属性进行重要性排序;筛选出重要性较大的特征及随机森林算法中最优的决策树棵数建立感官评价模型,并与建立的支持向量机(SVM)模型性能相比较。结果表明:色调均值、色调标准差、绿体均值、平均灰度级、饱和度均值、红体均值、饱和度标准差、亮度均值、一致性等9个特征属性的重要性较大,且与感官审评特征描述结果相一致;当采用优选出的9个重要性较大的特征及决策数棵数为500时,建立的模型性能最优,模型总体判别率为95.75%,Kappa系数为0.933,OOB误差为5%,较SVM模型分别提高了3.5%,0.066,优选的9个重要性较大的图像特征与感官审评特征描述相一致。研究表明:利用随机森林方法筛选出对茶叶外形特征属性贡献最大的少数几个特征建立模型,模型性能就能达到很好的识别效果,模型得到简化,同时模型精度和稳定性都高于其他方法。
论文目录
文章来源
类型: 期刊论文
作者: 刘鹏,吴瑞梅,杨普香,李文金,文建萍,童阳,胡潇,艾施荣
关键词: 计算机视觉,茶叶品质,感官审评,随机森林,支持向量机
来源: 光谱学与光谱分析 2019年01期
年度: 2019
分类: 基础科学,工程科技Ⅰ辑,信息科技
专业: 轻工业手工业,计算机软件及计算机应用
单位: 江西农业大学工学院,江西省蚕桑茶叶研究所,江西农业大学软件学院
基金: 国家自然科学基金项目(31460315),江西省重点研发计划项目(20171ACF60004),江西省现代农业产业技术体系专项资金(JXARS-02)资助
分类号: TS272;TP391.41
页码: 193-198
总页数: 6
文件大小: 502K
下载量: 518
相关论文文献
- [1].基于迭代随机森林算法的糖尿病预测[J]. 长春工业大学学报 2019(06)
- [2].基于改进随机森林的城市河流水生态健康评价研究[J]. 海河水利 2019(06)
- [3].基于随机森林癫痫患者脑电数据的分析研究[J]. 中国数字医学 2020(01)
- [4].基于局部均值分解和迭代随机森林的脑电分类[J]. 吉林大学学报(信息科学版) 2020(01)
- [5].网贷平台数据的随机森林预测模型实证分析[J]. 宜宾学院学报 2019(12)
- [6].采用单类随机森林的异常检测方法及应用[J]. 西安交通大学学报 2020(02)
- [7].随机森林数据情感挖掘方法分析[J]. 通讯世界 2020(01)
- [8].运用最大熵模型和随机森林模型对东北红松分布的模拟[J]. 东北林业大学学报 2020(03)
- [9].基于随机森林算法的城区土地覆盖分类研究[J]. 河北省科学院学报 2020(01)
- [10].运用随机森林模型对北京市林分蓄积生长量的预测[J]. 东北林业大学学报 2020(05)
- [11].融合人工鱼群和随机森林算法的膝关节接触力预测[J]. 中国医学物理学杂志 2020(04)
- [12].结合特征选择和优化随机森林的无线网络数据丢失重建[J]. 上海电力大学学报 2020(03)
- [13].基于随机森林算法的耕地质量定级指标体系研究[J]. 华南农业大学学报 2020(04)
- [14].一种基于随机森林的组合分类算法设计与应用[J]. 电子设计工程 2020(16)
- [15].基于随机森林算法的日光温室内气温预测模型研究[J]. 中国农学通报 2020(25)
- [16].基于因子分析和迭代随机森林方法的学生成绩综合评价——以都匀市某高中为例[J]. 黔南民族师范学院学报 2020(04)
- [17].基于随机森林模拟的辽宁省降水量空间分布研究[J]. 陕西水利 2020(09)
- [18].随机森林模型在膝关节炎患者结构特征与症状定量分析中的应用(英文)[J]. 磁共振成像 2020(10)
- [19].基于特征选择的极限随机森林算法研究[J]. 计算机应用研究 2020(09)
- [20].随机森林回归分析方法在代谢组学批次效应移除中的应用[J]. 中国卫生统计 2020(05)
- [21].一种面向非均衡分类的随机森林算法[J]. 计算机与现代化 2018(12)
- [22].随机森林模型和决策树模型在肝硬化上消化道出血预后中的应用[J]. 中国卫生统计 2019(02)
- [23].基于随机森林的债券违约分析[J]. 当代经济 2018(03)
- [24].基于改进网格搜索算法的随机森林参数优化[J]. 计算机工程与应用 2018(10)
- [25].随机森林在城市不透水面提取中的应用研究[J]. 云南师范大学学报(自然科学版) 2017(03)
- [26].一种顺序响应的随机森林:变量预测和选择[J]. 小型微型计算机系统 2017(08)
- [27].基于随机森林回归的军械器材需求预测[J]. 自动化应用 2017(09)
- [28].流式大数据下随机森林方法及应用[J]. 西北工业大学学报 2015(06)
- [29].面向高维数据的随机森林算法优化探讨[J]. 商 2016(04)
- [30].深度随机森林在离网预测中的应用[J]. 计算机科学 2016(06)