四元数矩阵方程AXAH+BHYB=C的埃米特解分量极秩

四元数矩阵方程AXAH+BHYB=C的埃米特解分量极秩

论文摘要

借助四元数矩阵的复表示方式Φ(·),将四元数体上的线性矩阵方程AXAH+BHYB=C转换为复数域上的等价复矩阵方程Φ(A)X~(Φ(A))H+(Φ(B))HY~Φ(B)=Φ(C).同时,利用复矩阵方程的埃米特解和分块矩阵的极秩性质,求出原方程埃米特通解中复矩阵分量集{X0},{X1},{Y0}和{Y1}的最大秩、最小秩公式.作为这些极秩公式的应用,最后推导出原方程埃米特通解中包含复矩阵解或全为复矩阵解的充要条件.

论文目录

  • 1方程 (1) 埃米特解中的复矩阵分量极秩
  • 3复矩阵分量极秩的应用
  • 文章来源

    类型: 期刊论文

    作者: 连德忠,谢锦山,李美莲,游德有,吴敏丽

    关键词: 四元数,矩阵方程,复表示,埃米特解,分块矩阵,极秩

    来源: 复旦学报(自然科学版) 2019年01期

    年度: 2019

    分类: 基础科学

    专业: 数学

    单位: 龙岩学院数学与信息工程学院

    基金: 国家自然科学基金(11601214,11526107),福建省教育厅课程思政项目(KC18084),福建省教育厅重点项目(JA14299),福建省自然科学基金(2015J05010),福建省高校杰出青年科研人才支持项目,龙岩学院科研项目(LG2014001,LB2014018)

    分类号: O241.6

    DOI: 10.15943/j.cnki.fdxb-jns.2019.01.004

    页码: 25-33

    总页数: 9

    文件大小: 202K

    下载量: 73

    相关论文文献

    • [1].时滞可交换四元数神经网络稳定性分析[J]. 智能科学与技术学报 2020(01)
    • [2].航姿参考系统中的三种简易四元数平均算法(英文)[J]. 中国惯性技术学报 2020(02)
    • [3].四元数分析中分数阶傅里叶变换的性质及其应用[J]. 高校应用数学学报A辑 2020(03)
    • [4].四元数分析中的幂函数与二项式定理[J]. 成都师范学院学报 2017(07)
    • [5].数的创立(四):哈密尔顿的四元数[J]. 语数外学习(高中版下旬) 2019(12)
    • [6].四元数及矩阵方程AX-YB=C的解[J]. 数学学习与研究 2016(23)
    • [7].基于四元数的卷积核编码方式研究[J]. 电脑知识与技术 2017(31)
    • [8].一类二阶四元数方阵保左谱的线性映射表示[J]. 菏泽学院学报 2015(02)
    • [9].四元数的发展与应用[J]. 文存阅刊 2017(20)
    • [10].对偶四元数捷联惯性导航系统初始对准方法[J]. 北京理工大学学报 2012(01)
    • [11].刚体对偶四元数相关问题[J]. 火力与指挥控制 2012(S1)
    • [12].一类四元数小波包的构造[J]. 纯粹数学与应用数学 2011(05)
    • [13].基于对偶四元数的航姿系统姿态更新算法研究[J]. 系统仿真学报 2008(02)
    • [14].四元数多项式的因式分解[J]. 河南师范大学学报(自然科学版) 2008(04)
    • [15].基于四元数奇异值分解的数字印刷质量评价[J]. 包装工程 2019(09)
    • [16].基于对偶四元数的单目视觉目标位姿测量[J]. 包装工程 2017(05)
    • [17].四元数空间中抛物型方程的边值问题[J]. 成都航空职业技术学院学报 2016(01)
    • [18].轨道要素奇异问题的改进四元数方法[J]. 中国空间科学技术 2012(01)
    • [19].对偶四元数在航天器相对导航中的应用[J]. 应用科学学报 2012(03)
    • [20].关于大角度范围内四元数与欧拉角转换的思考[J]. 导弹与航天运载技术 2012(05)
    • [21].玩四元数物理的还大有人在——为许方官《四元数物理学》而作[J]. 物理 2012(12)
    • [22].四元数分析中的一类高阶广义正则函数[J]. 贵州师范学院学报 2012(12)
    • [23].四元数正则函数的某些函数论性质[J]. 应用数学学报 2010(06)
    • [24].四元数反馈控制技术研究[J]. 航天控制 2009(03)
    • [25].基于单位四元数的空间后方交会解算[J]. 测绘学报 2008(01)
    • [26].倍四元数及其在串联机构运动分析中的应用[J]. 机械设计与制造 2008(02)
    • [27].分裂四元数的实表示矩阵的棣莫弗定理[J]. 数学的实践与认识 2020(07)
    • [28].基于单位四元数的任意旋转角度的三维坐标转换[J]. 大地测量与地球动力学 2017(01)
    • [29].工业机器人倍四元数轨迹规划算法的研究[J]. 中国机械工程 2016(20)
    • [30].基于对偶四元数的航天器相对位置和姿态耦合控制[J]. 飞行器测控学报 2013(06)

    标签:;  ;  ;  ;  ;  ;  

    四元数矩阵方程AXAH+BHYB=C的埃米特解分量极秩
    下载Doc文档

    猜你喜欢