基于MODIS数据的安徽省植被水分利用效率时空变化及影响因素

基于MODIS数据的安徽省植被水分利用效率时空变化及影响因素

论文摘要

水分利用效率是衡量生态系统碳水循环耦合程度的重要指标。基于MODIS数据、土地覆盖类型数据和气象数据,估算安徽省植被水分利用效率(WUE),采用趋势分析法和相关分析法对安徽省2000~2014年植被WUE的时空格局、变化趋势及影响因素进行研究。研究表明:(1)不同植被类型的WUE年均值差异明显,常绿阔叶林和常绿针叶林的WUE均值较高,分别达到1.66和1.69 gC·mm-1·m-2,而耕地的年均WUE最低,各植被类型的年均WUE按照"常绿针叶林>常绿阔叶林>灌木>草地>落叶阔叶林>针阔混交林>耕地"的顺序递减。植被年均WUE具有较强的空间分异性规律,整体上呈现南北高中间低的趋势,植被WUE的高值区主要分布在大别山区和皖南山区,分布范围与常绿针叶林、常绿阔叶林的分布范围基本一致。(2)安徽省2000~2014年植被WUE年内变化呈现出"增加-减小-增加-减小"的M状"双峰型"趋势,具有明显的季节差异,呈现出春季>秋季>夏季>冬季的特征,各季节植被WUE的均值分别占植被WUE的32.58%、24.91%、29.27%、13.24%。(3)安徽省植被WUE动态变化受到降水影响显著的区域占比3.88%;气温显著影响的区域占比2.19%;降水显著影响的地区主要分布在林地范围内,温度显著影响的地区则位于耕地范围内,降水和气温综合显著影响所占面积最小,为0.11%;而植被WUE受气温和降水影响均不显著占比为93.82%;整体上,安徽省大部分地区的植被WUE变化主要受非气候因素影响。

论文目录

  • 1 研究区概况
  • 2 数据来源与研究方法
  •   2.1 数据来源
  •   2.2 研究方法
  •     2.3.1 水分利用效率WUE
  •     2.3.2 分析方法
  • 3 结果与分析
  •   3.1 安徽省植被WUE时间分布特征
  •   3.2 安徽省植被WUE的空间分布特征
  •   3.3 植被WUE变化的影响因素分析
  • 4 结论与讨论
  • 文章来源

    类型: 期刊论文

    作者: 王芳,张运,黄静,汤志,何好,王银银

    关键词: 植被,水分利用效率,时空分布,影响因素,安徽省

    来源: 长江流域资源与环境 2019年06期

    年度: 2019

    分类: 基础科学

    专业: 生物学

    单位: 安徽师范大学地理与旅游学院,资源环境与地理信息工程安徽省工程技术研究中心,自然灾害过程与防控研究安徽省省级重点实验室

    基金: 安徽师范大学研究生科研创新与实践项目(2018kycx051),安徽省高校优秀人才基金(2012SQRL127)

    分类号: Q948

    页码: 1314-1323

    总页数: 10

    文件大小: 9709K

    下载量: 258

    相关论文文献

    • [1].三江源植被碳利用率动态变化及其对气候响应[J]. 中国环境科学 2020(01)
    • [2].基于MODIS数据的中国西北植被变化分析[J]. 林业科技通讯 2019(12)
    • [3].长江流域中上游植被NDVI时空变化及其地形分异效应[J]. 长江流域资源与环境 2020(01)
    • [4].西安园林芳香植被调研及改善建议[J]. 陕西农业科学 2020(01)
    • [5].河北省植被NDVI变化及其对气象要素的响应[J]. 林业与生态科学 2020(01)
    • [6].《中国植被志》:为中国植被登记造册[J]. 植物生态学报 2020(02)
    • [7].乌蒙山地区植被时空演变趋势预测[J]. 四川环境 2020(04)
    • [8].海岸带植被三种生物性状变化对消浪效果的影响[J]. 中国水运(下半月) 2020(08)
    • [9].山东植被灰色动态预测探析[J]. 防护林科技 2020(08)
    • [10].我国科学家发布植被病虫害遥感监测与预测系统[J]. 农村新技术 2020(10)
    • [11].植被保持水土效益研究[J]. 智能城市 2019(07)
    • [12].2000-2017年新疆天山植被水分利用效率时空特征及其与气候因子关系分析[J]. 植物生态学报 2019(06)
    • [13].典型喀斯特区植被变化及其与气象因子的关系——以广西百色市为例[J]. 沙漠与绿洲气象 2019(05)
    • [14].1982—2013年准噶尔盆地植被长势变化分析[J]. 林业资源管理 2016(05)
    • [15].中国北方地区秋季植被变化及对气候变化的响应研究[J]. 测绘与空间地理信息 2016(11)
    • [16].汉江流域植被净初级生产力时空格局及成因[J]. 生态学报 2016(23)
    • [17].一种利用野地瓜修复矿区植被与土壤的方法初探[J]. 中国农学通报 2017(01)
    • [18].城市冠层植被大气环境特性大涡模拟[J]. 科技导报 2017(03)
    • [19].植被微波遥感下粒子的散射特性研究[J]. 电子世界 2016(23)
    • [20].西藏自治区植被与气候变化的关系[J]. 山地学报 2017(01)
    • [21].生态工程背景下西南喀斯特植被变化主导因素及其空间非平稳性[J]. 生态学报 2017(12)
    • [22].2013年黑龙江省洪水对植被影响评估[J]. 灾害学 2017(04)
    • [23].植被在湿地恢复与重建中的应用[J]. 科学技术创新 2017(20)
    • [24].我国三北地区植被变化的动因分析[J]. 生态学报 2017(15)
    • [25].利用国产开源卫星影像分析广州市天河区植被现状[J]. 广东园林 2017(04)
    • [26].基于遥感数据的黔南州植被净初级生产力分析[J]. 江西农业学报 2017(10)
    • [27].遥感反演植被含氮量研究进展[J]. 生态学报 2017(18)
    • [28].植被保持水土的基本规律和总结[J]. 黑龙江科技信息 2015(24)
    • [29].梭梭树:沙漠中的植被之王[J]. 科学之友(上半月) 2019(09)
    • [30].“生物圈与植被”教学设计(鲁教版新教材)[J]. 地理教育 2020(09)

    标签:;  ;  ;  ;  ;  

    基于MODIS数据的安徽省植被水分利用效率时空变化及影响因素
    下载Doc文档

    猜你喜欢