感热通量论文-严凯琳,俞淼,郭黎,廖宏

感热通量论文-严凯琳,俞淼,郭黎,廖宏

导读:本文包含了感热通量论文开题报告文献综述及选题提纲参考文献,主要关键词:江淮梅雨,地表感热通量,相关性,环流场

感热通量论文文献综述

严凯琳,俞淼,郭黎,廖宏[1](2019)在《江淮梅雨异常与东亚地区地表感热通量的关系》一文中研究指出利用1951—2013年江淮地区30个代表站点逐日降水观测资料和NCEP/NCAR全球地表感热通量和环流场逐月再分析资料,探讨江淮梅雨异常与梅雨期及其前后东亚地区地表感热通量的相关关系及其物理机制。结果表明:梅雨前期,青藏高原、内蒙古高原和印度半岛的地表感热通量与江淮梅雨量存在正相关,当春季青藏高原、内蒙古高原、印度半岛地表感热通量异常偏高时,江淮梅雨偏多;梅雨期,梅雨量与地表感热通量显着负相关区在东海海面,同时青藏高原和河套平原地表感热通量在丰梅年显着偏大,说明海陆热力差异对江淮梅雨有共同调制作用;梅雨后期,河套平原、华北地区地表感热通量在丰梅年显着偏大,表明地表热力特征随大气环流的调整而发生演变。(本文来源于《干旱气象》期刊2019年05期)

任倩,周长艳,夏阳,岑思弦,龙园[2](2019)在《青藏高原东部春季感热通量与我国东部气温的年际关系》一文中研究指出利用ERA-Interim提供的地表感热、环流场资料和1979—2013年753站中国春季气温观测资料探讨了青藏高原(以下简称高原)东部春季感热通量与我国东部气温的关系。春季高原东部感热与我国东部气温在年际变化上存在密切的相关关系。去除9年滑动平均以后的SVD第一模态结果表明,当高原东部感热出现南弱(强)北强(弱)时,对应我国东北和华南地区的气温异常偏低(高)。当春季高原感热呈现南负北正的分布时,高层200hPa上,高纬东风异常减弱背景西风有利于冷空气的南下,加之副热带西风急流显着增强,有利于东北地区形成气旋性环流。中低层环流场上,我国北方地区上空为一深厚的东北冷涡所控制,从对流层低层到高层,均呈现较强的气旋式环流分布。一方面,它引导西伯利亚冷空气南下,造成我国东北地区气压异常减弱,气温异常偏低;另一方面,其西侧北风异常阻滞了华南地区上空的背景西南风,不利于暖气流的输送。进一步分析得出,与PC1相关的南北温度差值场上,东亚地区上空从低纬到高纬呈现"负—正—负"的分布形势,有利于副热带西风急流在我国上空的显着增强。气旋中心上暖下冷的结构,导致位涡显着发展并向低层伸展、侵入,增强了对流层中低层的气旋性环流。气旋中心整个对流层为深厚的异常干空气,湿度负值中心与冷中心相对应,表明干冷空气异常下传发展。干侵入使得冷涡加强发展,维持了异常气旋性环流,导致春季东北、华南地区的异常降温。虽然前冬Nino3.4区海温与春季感热相关较好,但其对我国东部春季气温影响并不显着。(本文来源于《冰川冻土》期刊2019年04期)

袁国波,李玫洁[3](2019)在《一次沙尘暴过程中的地面感热通量分析》一文中研究指出利用2016年3月3—5日的气象观测数据分析了一次沙尘暴过程中地面感热通量的变化特征。结果表明:在此次沙尘暴过程中,地面感热通量的日变化曲线呈现一波型。在通常情况下,白天地面感热通量是正值,夜间地面感热通量是负值。在出现沙尘暴的时段内,地面感热通量会发生很大变化。发生在夜间的沙尘暴阻碍地面辐射,减弱地面热量的损失,致使地面感热通量大于零;发生在白天的沙尘暴阻碍太阳辐射,显着消弱地面感热通量。(本文来源于《陕西气象》期刊2019年01期)

张超,田荣湘,茆慧玲,申紫薇[4](2018)在《青藏高原4月感热通量异常对长江以南夏季降水的影响》一文中研究指出基于1980—2015年青藏高原、长江以南地区的站点资料,利用EOF、小波分析等方法,分析了青藏高原及各分区4月的感热通量和长江以南地区夏季降水特征,以及它们之间的相关性。结果表明:喜马拉雅地区(关键区) 4月感热通量可以作为长江以南地区夏季降水的预报因子之一;青藏高原4月感热通量和长江以南地区夏季降水均存在4 a主周期和8 a副周期,在1998年、2011年前后出现转折;高原整体、E区、G区4月感热通量均与长江以南地区夏季降水呈负相关;高原关键区4月感热通量偏弱时,长江以南地区高空(850 hPa)处于深槽槽前,西部配合有切变线系统,斜压性很强,空气相对湿度很大,利于长江以南地区降水,反之亦然。(本文来源于《大气科学学报》期刊2018年06期)

骆敬新,高志刚,刘克修,宋翔洲,武双全[5](2018)在《中国沿岸ERA-Interim和MERRA感热通量和潜热通量的资料评估》一文中研究指出选择33个沿岸代表性海洋站,采用1981—2012年海洋站观测数据统计计算中国沿岸整体的海气感热通量和潜热通量历年逐月平均值,并对ERA-Interim、MERRA两种再分析数据的感热通量和潜热通量数据进行对比检验分析,为ERA-I、MERRA热通量资料的使用提供参考。结果表明:1)历年逐月均值检验显示,两种再分析资料感热通量和潜热通量与海洋站计算结果均值差异不显着,ERA-I结果略高于海洋站结果,MERRA的均值与海洋站更接近。再分析资料的感热通量和潜热通量与海洋站相关性显着,但方差差异均明显,ERA-I与海洋站的方差差异比MERRA小。2)季节变化特征检验显示,两种再分析数据感热通量和潜热通量的季节变化时间序列与海洋站统计计算结果相关性均显着,能够较好地体现中国沿岸整体的感热通量和潜热通量季节变化特征。但也存在一些差异:2—7月中国沿岸整体的感热通量,海洋站数据明显低于再分析数据;潜热通量季节变化振幅海洋站大于再分析数据,MERRA数据季节变化振幅最小。3)年际变化特征的检验结果显示:1981—2012年,对于中国沿岸整体,ERA-I数据感热通量和潜热通量年际变化和海洋站相关性显着,均下降趋势明显,可以用于海气热通量的年际变化趋势分析;MERRA数据的感热通量年际变化略有下降趋势,但和海洋站的相关性不显着,MERRA数据潜热通量的年际变化呈略上升的趋势,与海洋站计算的潜热通量趋势明显不一致,在1981—2012年不能代表中国沿岸整体的海气热通量的年际变化特征。(本文来源于《气象科技进展》期刊2018年04期)

王健,仝纪龙,肖贻青,吴肖燕,张文煜[6](2018)在《东亚典型干旱、半干旱区夏季感热通量的年代际变化特征》一文中研究指出基于1901—2010年ERA-20C地表感热通量和其他气象要素逐月资料,利用Lanczos低通滤波、多元逐步回归、Mann-Kendall检验和滑动t检验等方法,分析东亚典型极端干旱区、干旱区、半干旱区和湿润偏干区4个区域夏季感热通量的变化趋势及年代际变化特征。结果表明:(1)近110 a,东亚干旱、半干旱区4种类型区域的夏季感热通量变化趋势不尽相同,极端干旱区无明显变化趋势,而其他3个区域均呈显着上升趋势,且随着地表湿润度的增加上升趋势越大;半干旱区和湿润偏干区夏季感热通量在显着上升趋势上还迭加了明显的年代际特征,均在1960年代发生由偏低向偏高的突变,而干旱区夏季感热通量突变时间在1950年代中期。(2)各气象要素对夏季感热通量变化的贡献在东亚干旱、半干旱区不同区域有显着差异。极端干旱区和干旱区夏季感热通量的变化主要由地表净辐射和降水贡献,而半干旱区和湿润偏干区则主要由地气温差和10 m风速贡献,且突变后期的贡献均高于突变前期。(3)大气环流异常对东亚夏季感热通量变化有重要作用。突变前期,东亚干旱、半干旱区大部高空200 hPa为东风异常,低层850 hPa为东南风异常,配合500 hPa正涡度异常,导致辐合上升气流偏强,有利于维持夏季感热通量偏低;反之突变后期,200 hPa为西风异常,500 hPa为负涡度异常,低层850 hPa为西北风异常,导致辐合上升气流偏弱,有利于维持夏季感热通量偏高。(本文来源于《干旱气象》期刊2018年02期)

张恬月,李国平[7](2018)在《青藏高原夏季地面感热通量与高原低涡生成的可能联系》一文中研究指出利用NCEP/NCAR地面感热通量再分析格点资料以及MICAPS天气图资料识别的高原低涡资料集,分析了1981—2010年青藏高原夏季地面感热通量线性倾向分布的空间分布特征,重点讨论了夏季高原地面感热通量与同期高原低涡生成频数的可能联系尤其是空间相关性。结果表明,近30 a夏季感热通量的线性倾向分布具有区域性差异,感热减少趋势在高原分布较广且负值中心明显,感热增加主要分布在高原西北部和东部。夏季地面感热通量与同期高原低涡生成频数呈高度正相关;感热通量强年,高原主体东部地区低层呈气旋式环流,高层为辐散气流,高原上空上升气流偏强,感热通量弱年的情形与之相反。地面感热加热强度与高原低涡的生成频数在空间上有明显联系。(本文来源于《沙漠与绿洲气象》期刊2018年02期)

张超,田荣湘,茆慧玲,张志非,申紫薇[8](2018)在《青藏高原中东部地区地表感热通量的时空变化特征》一文中研究指出基于1970—2015年青藏高原地区78个站点的观测资料,应用物理方法计算了高原中东部地区的感热通量。利用小波分析、相关性分析等研究了高原中东部感热通量的时空特征和影响因子。结果表明,高原年平均和春夏季节,感热通量周期为3~4 a,而秋冬季节为2~3 a;感热通量的变化趋势为,1970—1980年和2001—2015年感热通量呈增加趋势,而1981—2000年呈减小趋势;高原年平均和各季节的最强感热加热中心均位于高原南坡E区(除冬季外),最弱加热区域位于高原西北部A区(夏季除外);高原春秋季节感热通量的空间分布均匀,冬夏季节有明显的梯度分布且梯度相反,夏季呈现自东到西的梯度;春季、夏季及秋季,高原感热通量和降水呈负相关;高原10 m风速的极值中心随季节北上南撤变化与地气温差的强弱变化共同决定了感热通量的季节变化。(本文来源于《气候变化研究进展》期刊2018年02期)

解晋,余晔,刘川,葛骏[9](2018)在《青藏高原地表感热通量变化特征及其对气候变化的响应》一文中研究指出选取中国气象局在青藏高原(下称高原)地区常规气象观测站点中85个资料连续性较好的站点资料,基于CHEN-WENG感热交换系数方案计算了1981-2014年地表日均感热通量,并用M-K检验法分析了季节平均感热通量和年均感热通量的年际变化特征,结合经验正交函数法EOF(Empirical Orthogonal Function)、Pearson相关法,分析了年均感热通量的时空演变及异常分布特征以及不同地区站点感热通量与气候因子的相关性。结果表明,1981年以来,高原地表感热通量无论在年尺度还是季节尺度上的年际变化都表现为先下降后上升的趋势,其中春季和冬季由下降转变为上升的年份早于夏季和秋季,且夏季上升的幅度是四季中最弱的;1981-2003年间感热通量下降主要与地气温差和平均风速的减小有关,而2004-2014年间感热通量的上升主要与地气温差的显着增大有关。空间上,各站点感热通量的上升或下降并不同步,但存在一定的相互联系,感热通量上升的站点主要位于青海省;感热通量与各气候因子的相关性有明显的时空差异,整体上受地表温度影响显着,与地表温度变化呈正相关;与降水、日照时数、风速等气候因子的相关性在年尺度上存在较大的空间差异,在季节尺度上,感热通量与气象因子的季节相关性较好,尤其是夏季,感热通量与降水呈反相关,与日照时数、风速和气温呈正相关,其次是春季,秋、冬季相关性较差。(本文来源于《高原气象》期刊2018年01期)

张超[10](2017)在《青藏高原感热通量的时空变化及其对我国夏季区域降水的影响》一文中研究指出在地气相互作用时,能量、物质和动量交换对全球大气环流及气候波动产生深远影响。其中,在近地层,感热通量通过湍流形式与大气发生地气相互作用。由于青藏高原平均海拔大于4000米以上被称为地球的"第叁极",其矗立在高空中强大的感热加热称为感热驱动泵。高原的热力作用是亚洲季风更替的重要因子,它对东亚地区降水的重要性毋庸置疑。同时,在季风转变期间,高原感热通量作为加热高原及周边地区大气最重要的因子之一,对我国夏季降水的预测有重要意义。根据高原下垫面植被覆盖率差异,我们将海拨大于3000m青藏高原划分为7个子区域(A区一G区)。同时,利用青藏高原地区78个站点的观测资料、全国830个站点的观测资料,及NCEP提供的全球17层的资料,计算了高原和各分区感热通量。通过小波分析、相关分析、合成分析、EOF等分析方法,研究了高原感热通量的时空分布特征及变化规律,高原4月感热通量与我国夏季降水的关系,以及高原4月感热通量与我国长江以南夏季降水的关系。高原感热通量的时空变化特征。高原年平均、春季和夏季感热通量的变化周期均为3到4年,秋季、冬季为2到3年;高原最强感热加热位于在喜马拉雅地区,最弱加热区域位于高原西北部A区;高原春秋季节感热通量的空间分布均匀,冬夏季节有明显的梯度分布,夏季呈现自东向西的梯度,而冬季方向相反。高原10m风速的极值中心随季节北上南撤变化与地气温差的强弱变化共同决定了感热通量的季节变化。高原4月感热通量与我国长江以南夏季降水的关系。4月喜马拉雅地区(高原E区)是影响长江以南夏季降水的关键区,4月关键区感热通量和长江以南地区夏季降水具有相反的变化趋势,即负相关关系,且均有4年主周期和8年副周期,在1998、2011年前后分别出现转折。分析其降水异常的机理发现,高原关键区4月感热通量偏弱时,长江以南地区处于深槽槽前,配合有切变线系统,斜压性很强,空气相对湿度很大,有利于长江以南地区降水。反之,不利于降水。(本文来源于《浙江大学》期刊2017-06-06)

感热通量论文开题报告

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

利用ERA-Interim提供的地表感热、环流场资料和1979—2013年753站中国春季气温观测资料探讨了青藏高原(以下简称高原)东部春季感热通量与我国东部气温的关系。春季高原东部感热与我国东部气温在年际变化上存在密切的相关关系。去除9年滑动平均以后的SVD第一模态结果表明,当高原东部感热出现南弱(强)北强(弱)时,对应我国东北和华南地区的气温异常偏低(高)。当春季高原感热呈现南负北正的分布时,高层200hPa上,高纬东风异常减弱背景西风有利于冷空气的南下,加之副热带西风急流显着增强,有利于东北地区形成气旋性环流。中低层环流场上,我国北方地区上空为一深厚的东北冷涡所控制,从对流层低层到高层,均呈现较强的气旋式环流分布。一方面,它引导西伯利亚冷空气南下,造成我国东北地区气压异常减弱,气温异常偏低;另一方面,其西侧北风异常阻滞了华南地区上空的背景西南风,不利于暖气流的输送。进一步分析得出,与PC1相关的南北温度差值场上,东亚地区上空从低纬到高纬呈现"负—正—负"的分布形势,有利于副热带西风急流在我国上空的显着增强。气旋中心上暖下冷的结构,导致位涡显着发展并向低层伸展、侵入,增强了对流层中低层的气旋性环流。气旋中心整个对流层为深厚的异常干空气,湿度负值中心与冷中心相对应,表明干冷空气异常下传发展。干侵入使得冷涡加强发展,维持了异常气旋性环流,导致春季东北、华南地区的异常降温。虽然前冬Nino3.4区海温与春季感热相关较好,但其对我国东部春季气温影响并不显着。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

感热通量论文参考文献

[1].严凯琳,俞淼,郭黎,廖宏.江淮梅雨异常与东亚地区地表感热通量的关系[J].干旱气象.2019

[2].任倩,周长艳,夏阳,岑思弦,龙园.青藏高原东部春季感热通量与我国东部气温的年际关系[J].冰川冻土.2019

[3].袁国波,李玫洁.一次沙尘暴过程中的地面感热通量分析[J].陕西气象.2019

[4].张超,田荣湘,茆慧玲,申紫薇.青藏高原4月感热通量异常对长江以南夏季降水的影响[J].大气科学学报.2018

[5].骆敬新,高志刚,刘克修,宋翔洲,武双全.中国沿岸ERA-Interim和MERRA感热通量和潜热通量的资料评估[J].气象科技进展.2018

[6].王健,仝纪龙,肖贻青,吴肖燕,张文煜.东亚典型干旱、半干旱区夏季感热通量的年代际变化特征[J].干旱气象.2018

[7].张恬月,李国平.青藏高原夏季地面感热通量与高原低涡生成的可能联系[J].沙漠与绿洲气象.2018

[8].张超,田荣湘,茆慧玲,张志非,申紫薇.青藏高原中东部地区地表感热通量的时空变化特征[J].气候变化研究进展.2018

[9].解晋,余晔,刘川,葛骏.青藏高原地表感热通量变化特征及其对气候变化的响应[J].高原气象.2018

[10].张超.青藏高原感热通量的时空变化及其对我国夏季区域降水的影响[D].浙江大学.2017

标签:;  ;  ;  ;  

感热通量论文-严凯琳,俞淼,郭黎,廖宏
下载Doc文档

猜你喜欢