导读:本文包含了纳米杂化论文开题报告文献综述、选题提纲参考文献及外文文献翻译,主要关键词:纳米,光敏剂,石墨,疏水,氟化,折射率,金属。
纳米杂化论文文献综述
赵挥,翁晨晨,任金涛,葛丽,刘玉萍[1](2020)在《有机膦酸盐衍生的氮掺杂的磷酸钴/碳纳米管杂化材料作为高效氧还原电催化剂(英文)》一文中研究指出随着环境污染和能源危机的日益严重,探索高效的非贵金属氧还原电催化剂来替代商业Pt/C迫在眉睫.其中,报道比较多的是具有钴基活性物种和氮掺杂碳的复合材料例如Co-N_x-C, Co_3O_4/GO, Co-N/CNT等,该复合材料具有高导电性、良好的稳定性和优异的催化活性.与其他钴基催化剂相比,磷酸钴由于其成本低廉,对环境友好,多功能的优良特性,已被广泛应用于催化、吸附、分离及储能等领域,在电催化方面也有极大的应用潜力.研究表明,磷酸基团不仅可以充当质子受体,也会诱导局部钴原子的几何结构发生扭曲,从而有利于水分子的吸附并促进析氧反应的发生.此外,磷酸钴也被证实具有一定的氧还原活性.尽管磷酸钴电催化剂的研究已经取得了一定进展,磷酸根有利于质子传输,但是其导电性很差,不利于电荷的转移和传输,使得其电催化活性不高.将磷酸钴和导电碳材料复合是解决问题的有效方法.而且,磷酸钴在碱性溶液中并不稳定,极大限制了其在电催化氧还原中的应用.金属有机膦酸盐是一类包含金属离子和有机膦酸配体的杂化材料,通过简单的焙烧便可以很容易地得到金属无机磷酸盐,并且在焙烧过程中氮掺杂的碳也会原位产生,并包覆在磷酸钴的表面,使得其导电性和催化活性大大提高.为此,本研究组制备了有机膦酸钴衍生的磷酸钴和氮磷掺杂的石墨烯的复合材料并用于电催化氧还原和析氧反应,所得到的材料导电性和稳定性良好,然而,该催化剂的表观活性与商业Pt/C相比仍有较大差距,且使用有机膦酸钴作为前驱体对活性的影响也不甚清楚.因此,本文采用含氮的有机膦酸配体乙二胺四亚甲基膦酸钠(EDTMPS)为磷源制备了氮掺杂的磷酸钴/碳纳米管杂化材料(CoPiC-N/CNT-3),其催化活性和稳定性良好,并进一步探讨了各种不同因素对电催化活性的影响.XRD和TEM结果表明,用这种方法得到的磷酸钴(CoPiC)为Co_2P_2O_7物相,与磷酸二氢钠为磷源制备得到的CoPi相比,CoPiC的表面有石墨化碳层的存在, EDS图谱表明, Co, P, C, N均匀地掺杂到复合材料的骨架结构中.Raman光谱结果表明,石墨化碳层的存在和适量的碳纳米管的引入均可以增强复合材料的石墨化程度并提高了导电性,而氮掺杂导致其缺陷位点增多.XPS结果进一步表明,有机膦酸钴可以作为前驱体可制得氮掺杂的磷酸钴/碳纳米管杂化材料.电催化反应测试表明, CoPi C-N/CNT-3的氧还原活性与商业Pt/C相当,其遵循的是4电子的反应路径,而且抗甲醇氧化能力和稳定性均优于Pt/C.原因主要归结于以下几点:(1)磷酸钴颗粒与氧化碳纳米管的协同作用可以显着增强氧还原催化活性,引入的碳纳米管可以克服磷酸钴导电性差的缺陷;(2)磷酸钴在复合材料中分散均匀,使得可以充分利用催化剂的活性位点;(3)氮掺杂可以调变材料的电子结构,从而改善催化活性;(4)石墨化碳层的存在可以改善材料的电子导电性和稳定性,有利于电子转移并可以保护磷酸钴颗粒在催化氧还原反应过程中不被电解液腐蚀.可见,所制有机膦酸衍生的氮掺杂的磷酸钴/碳纳米管杂化材料有望替代Pt/C催化剂,并推动清洁可再生能源领域的相关研究.(本文来源于《Chinese Journal of Catalysis》期刊2020年02期)
赵晴,何少剑,林俊,林千果,段晓雅[2](2019)在《改性埃洛石纳米管/Pebax1657杂化膜的制备及其气体分离性能》一文中研究指出以聚多巴胺和聚乙烯亚胺为原料,采用表面涂覆法对埃洛石纳米管(HNTs)进行改性,得到无机填料PDH。再以聚醚共聚酰胺Pebax1657为聚合物基底、PDH为无机填料制备了有机-无机杂化膜,利用SEM,XRD,DSC等方法对膜的结构进行了表征,并考察了膜的机械性能和气体分离性能。实验结果表明,PDH在Pebax1657中分散均匀,且二者相容性较好。PDH与Pebax1657间产生氢键,对分子链运动有一定程度的限制,导致玻璃化转变温度升高,结晶度降低。随PDH含量增加,杂化膜的密度逐渐增加,拉伸强度先增大后减小,断裂伸长率降低,杂化膜的CO_2和N_2的渗透系数增加,与纯Pebax膜相比,杂化膜的渗透系数和选择性逐渐接近Robeson上界,气体分离性能有所提高。(本文来源于《石油化工》期刊2019年11期)
胡绪灿,姚伯龙,刘嘉成,陈昆,刘竞[3](2019)在《高折射率TiO_2纳米杂化材料的制备及性能研究》一文中研究指出以1,2-乙二硫醇、四溴双酚A环氧树脂和9,9-二[(2,3-环氧丙氧基)苯基]芴为原料,LiOH的甲醇溶液为催化剂,采用巯基-环氧点击化学反应制备含S和Br元素的聚合物基体;以钛酸四丁酯为前驱体,采用溶胶-凝胶法和分段热固化制备出透明高折射率TiO_2纳米杂化材料。通过红外光谱、纳米粒度仪、椭圆偏振光谱仪、透射电子显微镜和紫外-可见分光光度计等仪器对其结构、性能进行表征。结果表明:TiO_2粒子在聚合物基体中成功合成并以纳米尺度均匀分散,材料在可见光区域有很高的透光率,大多在95%左右;随着TiO2粒子杂化量的增加,在486 nm处的折射率由1.660 2提高到了1.756 5,阿贝数由21.65提高到34.63。(本文来源于《涂料工业》期刊2019年11期)
汤海龙,卢少微,王晓强,黄冬月,董慧[4](2019)在《喷射成型法制备石墨烯杂化碳纳米管应变传感器》一文中研究指出采用石墨烯片(GnPs)和多壁碳纳米管(MWCNTs)制备了高灵敏度和线性应变传感器。通过优化超声时间和球磨混合过程获得GnPs/MWCNTs混合物的最佳分散比(30%GnPs)。然后将混合物喷涂到通过特定条件处理的PU膜上作为应变传感器。单调拉伸结果表明,与纯MWCNTs传感器相比,具有30%GnPs的传感器表现出相对高的传感范围(0~7.5%),传感系数(181.36)和99.545%的线性度。升/降温(0~200℃)实验结果表明传感器升温过程中电阻温度系数为-6.103%/℃,降温过程中电阻温度系数为-5.993%/℃,传感器具有较好的温敏特性和可逆性。(本文来源于《沈阳航空航天大学学报》期刊2019年05期)
田贺云,尹学功,湛世霞,马晨光,邢瑞敏[5](2019)在《贵金属杂化纳米材料的合成及性能研究进展》一文中研究指出近年来,杂化纳米材料的出现极大地拓展了纳米材料的应用范围,其特殊的结构、性能、尺寸和形貌使其不仅保持了各组分材料的特性及功能,更涌现了不同于各组分材料所不具备的新颖的、多样化的特殊性能和应用潜能,因此其制备方法和性能应用已经成为了研究热点.运用纳米技术将贵金属纳米粒子与其他性能优异的物质结合形成的贵金属杂化纳米材料被广泛运用到电化学、光催化、免疫传感、生物催化和医药化学等领域.本文综述了贵金属杂化纳米材料的制备方法、结构组成、性能特点、应用前景以及最新的发展趋势,重点介绍了贵金属杂化纳米材料的合成及应用.(本文来源于《化学研究》期刊2019年03期)
平建涛[6](2019)在《基于杂化纳米载体的单线态氧高效产生与荧光检测》一文中研究指出光动力治疗(Photodynamic therapy,PDT)是一种以光、氧、光敏剂的相互作用为基础对肿瘤等疾病进行治疗的新兴技术。光敏剂在特定波长光的诱导下,发生光动力反应而产生大量的活性氧,主要以单线态氧(Singletoxygen,1O2)为主。1O2能够氧化细胞内的细胞器和生物大分子等,造成细胞损伤,进而诱导肿瘤细胞的凋亡或者坏死。与传统的手术、化疗、放疗等治疗手段相比,PDT具有侵入性小、选择性好、副作用小等优点,引起了大量科研工作者的研究兴趣。虽然PDT具有很多的优点,但是光敏剂的聚集、肿瘤乏氧等问题严重影响1O2的产率,进而影响PDT治疗效果;对PDT过程中细胞内1O2的产生和分布进行实时监测也有利于评估PDT治疗效果,实现精准个性化治疗。因此,我们基于多孔且透气性好的聚合物-有机二氧化硅杂化纳米载体分别构建了纳米光敏剂和荧光纳米探针用于1O2的高效产生及荧光检测。主要内容和结果如下:1、负载酞菁锌(Zinc(Ⅱ)Phthalocyanine,ZnPc)的聚合物-有机二氧化硅杂化纳米颗粒(Nanoparticles,NPs)的制备和优化。基于共沉淀-包覆法,以聚苯乙烯(Polystyrene,PS)、十二烷基叁甲氧基硅烷(n-Dodecyltrimethoxysilane,DTS)为基质制备NPs,同时将不同浓度的第二代光敏剂ZnPc包埋到NPs内部,基于静电吸附作用,得到多聚赖氨酸(Poly-L-Lysine,PLL)包覆的纳米光敏剂(ZnPc-PS@SiO2@PLL-NPs)。正电性的PLL壳层不仅使得纳米颗粒具有很好的生物相容性,能有效的被细胞吞噬,而且还能防止ZnPc的泄漏。此外还分别以PVK(Poly(N-vinylcarbazole))和 PFO(Poly(9,9-dioctylfluorenyl-2,7-diyl))为聚合物基质制备了纳米光敏剂(ZnPc-PVK@SiO2@PLL-NPs 和 ZnPc-PFO@SiO2@PLL-NPs)。研究了 ZnPc在叁种不同聚合物基质纳米颗粒中的聚集度与掺杂浓度的关系以及对1O2产率的影响。实验结果表明:(1)对于不同基质的纳米光敏剂而言,ZnPc最优掺杂浓度为4 wt%,此时纳米光敏剂具有最优的1O2产率;(2)ZnPc在不同纳米颗粒中的聚集程度不同:ZnPc在PS@SiO2@PLL-NPs中聚集度最大,此时1O2产率最低;在PFO@SiO2@PLL-NPs中聚集度最小,此时1O2产率最高。这说明具有较大刚性结构单元(刚性面结构大小PS<PVK<PFO)的聚合物能够有效缓解ZnPc在纳米颗粒中的聚集,从而提高1O2产率。并且在细胞和小鼠PDT实验中,4 wt%ZnPc-PFO@Si02@PLL-NPs对肿瘤细胞的生长均表现出优异的抑制作用。2、构建具有自携氧功能的氟化纳米光敏剂用以缓解肿瘤乏氧,提高1O2产率。考虑到氟原子取代后的光敏剂具有更好的光稳定性和抗氧化性以及全氟碳(Perfluorocarbons,PFCs)可以用于携带氧气,我们以PS为聚合物基质并使用全氟硅氧烷(PFDTS)和氟化的酞菁锌(ZnPcF16)来替代DTS和ZnPc,构建了氟化纳米光敏剂(ZnPcF16-PFDTS-NPSs)。ZnPcF16的最优掺杂浓度为4wt%,并且与非氟化纳米光敏剂(ZnPcF16-DTS-NPSs)相比,ZnPcF16-PFDTS-NPSs具有更高的溶解氧含量、增强的1O2产率和更优的体外PDT效果,这主要得益于PFDTS为纳米颗粒提供了具有携氧能力的全氟碳链。3、设计了两种类型的荧光纳米探针用于实时监测PDT诱导产生的1O2。第一类:将疏水性1O2探针1,3-二苯基异苯并呋喃(1,3-diphenylisobenzofuran,DPBF)负载到聚合物基质的杂化纳米颗粒中(DPBF-PS-NPs),利用DPBF(λex=405 nm,λem=455 nm)的荧光特性检测1O2。负载20 wt%DPBF的纳米颗粒被用来实时监测细胞内PDT过程中1O2的产生。当1O2产生时,DPBF被消耗,荧光强度下降。由于纳米颗粒内核的疏水作用,其他活性氧自由基(·OH、O2·-H2O2等)不能进入到纳米颗粒内部,只有以气体形式存在的O2和1O2可以自由出入纳米颗粒,这样不仅对DPBF起到一定地保护作用,也使得该纳米荧光探针对于1O2具有很好的特异性。第二类:为了提高纳米探针的光稳定性,我们以可双光子激发的共轭聚合物PFO(λex=800 nm,λem=441 nm)为基质,基于PFO与DPBF之间的荧光共振能量传递,设计了可双光子激发的荧光增强型纳米荧光探针(DPBF-PFO-NPs)来检测1O2。当DPBF浓度为20wt%时,在双光子激发下,PFO(50wt%)在44.1 nm处的荧光几乎完全被猝灭;随着1O2的产生,DPBF被消耗,PFO在441 nm处的荧光逐渐增强。该纳米荧光探针的光稳定性得到大幅提升,同样具有很好的特异性和较高的检测灵敏度,检测下限约为350 nM。这两类探针都能以荧光成像的形式实时监测细胞内光动力过程中1O2的产生,为实现精准有效的光动力治疗提供支持。图57幅,表9个,参考文献152篇。(本文来源于《北京交通大学》期刊2019-09-01)
侯成敏,李娜,董海涛,张效林,曹从军[7](2019)在《水溶性含氟聚合物杂化纳米SiO_2制备超疏水材料及性能》一文中研究指出为了减少有毒有机溶剂的使用,制备环境友好的水溶性超疏水材料。采用自由基聚合合成水性环氧树脂聚(甲基丙烯酸缩水甘油酯-无规-丙烯酸丁酯-无规-甲基丙烯酸羟乙酯(P(GMA-r-BA-r-HEMA)),经七氟丁酸(HFBA)与氨基纳米二氧化硅(SiO_2)杂化组装,以水为溶剂制备超疏水材料,在棉织物表面构筑超疏水表面。通过改变氨基纳米SiO_2的含量,探究棉织物的疏水性能和耐溶剂性能。研究结果表明,当接枝含氟量一定时,随着氨基纳米SiO_2含量的增加,超疏水处理棉织物的超疏水效果越好。经该超疏水材料浸渍改性的棉织物,有良好的疏液效果,水接触角为(150±2)°,耐久时间为83 min,具备很好的耐溶剂性,能耐受水洗涤、超声和NaCO_3溶液洗涤。(本文来源于《功能材料》期刊2019年08期)
李鹏举,吴晓辉,卢咏来,张立群[8](2019)在《界面偶联剂KH550在氧化石墨烯/白炭黑纳米杂化填料中的应用研究》一文中研究指出白炭黑用γ-氨丙基叁乙氧基硅烷(偶联剂KH550)进行液相改性,再与氧化石墨烯(GO)悬浮液机械混合,混合液通过喷雾干燥法制备偶联剂KH550改性的GO/白炭黑纳米杂化填料(GO@SiO_2),考察偶联剂KH550用量对溶聚丁苯橡胶(SSBR)/顺丁橡胶(BR)/GO@SiO_2复合材料性能的影响。结果表明:当偶联剂KH550相对于白炭黑质量比为7%和10%时,GO@SiO_2的热稳定性较好;偶联剂KH550能显着提高SSBR/BR/GO@SiO_2复合材料的交联密度、填料分散性、耐磨性能并降低生热;当偶联剂KH550相对于白炭黑质量比为5%时,复合材料的交联密度最大,综合物理性能最好;当偶联剂KH550相对于白炭黑质量比为10%时,复合材料的耐磨性能最好且生热最低。(本文来源于《橡胶工业》期刊2019年08期)
陈剑燕[9](2019)在《硅纳米线杂化太阳能电池技术探讨》一文中研究指出硅纳米线杂化太阳能电池由于具有光吸收范围广、载流子分离和收集能力相对较高、纳米结构可以有效增强光吸收、对无机材料的质量要求不高从而降低电池的成本等优点,成为太阳能电池的研究热点之一。该文回顾了硅纳米线杂化太阳能电池的技术起源,介绍了器件基本结构和工作原理,分析了由硅纳米线阵列和PEDOT:PSS制成的杂化太阳能电池的制备方法,并着重分析了硅纳米线的制备方法,最后探讨了杂化太阳能电池研究实践中面临的问题及目前主要的研究方向。(本文来源于《科技资讯》期刊2019年23期)
崔建东[10](2019)在《无机-有机杂化纳米固定化酶的设计及其催化性能》一文中研究指出生物酶催化具有作用条件温和、绿色无污染、独特和高效的底物选择性等优点,被广泛应用在医药、食品、化工以及环境保护方面。但是游离酶在使用过程中常常表现出稳定性差、难以重复使用、使用成本高等问题。酶的固定化技术是提高酶稳定性、改善酶催化性能的主要方法。固定化的酶不仅易于与底物、产物分离,而且可以长时间内重复使用,降低成本。并能够在绝大多数情况下提高酶(本文来源于《第十二届中国酶工程学术研讨会论文摘要集》期刊2019-08-08)
纳米杂化论文开题报告
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
以聚多巴胺和聚乙烯亚胺为原料,采用表面涂覆法对埃洛石纳米管(HNTs)进行改性,得到无机填料PDH。再以聚醚共聚酰胺Pebax1657为聚合物基底、PDH为无机填料制备了有机-无机杂化膜,利用SEM,XRD,DSC等方法对膜的结构进行了表征,并考察了膜的机械性能和气体分离性能。实验结果表明,PDH在Pebax1657中分散均匀,且二者相容性较好。PDH与Pebax1657间产生氢键,对分子链运动有一定程度的限制,导致玻璃化转变温度升高,结晶度降低。随PDH含量增加,杂化膜的密度逐渐增加,拉伸强度先增大后减小,断裂伸长率降低,杂化膜的CO_2和N_2的渗透系数增加,与纯Pebax膜相比,杂化膜的渗透系数和选择性逐渐接近Robeson上界,气体分离性能有所提高。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
纳米杂化论文参考文献
[1].赵挥,翁晨晨,任金涛,葛丽,刘玉萍.有机膦酸盐衍生的氮掺杂的磷酸钴/碳纳米管杂化材料作为高效氧还原电催化剂(英文)[J].ChineseJournalofCatalysis.2020
[2].赵晴,何少剑,林俊,林千果,段晓雅.改性埃洛石纳米管/Pebax1657杂化膜的制备及其气体分离性能[J].石油化工.2019
[3].胡绪灿,姚伯龙,刘嘉成,陈昆,刘竞.高折射率TiO_2纳米杂化材料的制备及性能研究[J].涂料工业.2019
[4].汤海龙,卢少微,王晓强,黄冬月,董慧.喷射成型法制备石墨烯杂化碳纳米管应变传感器[J].沈阳航空航天大学学报.2019
[5].田贺云,尹学功,湛世霞,马晨光,邢瑞敏.贵金属杂化纳米材料的合成及性能研究进展[J].化学研究.2019
[6].平建涛.基于杂化纳米载体的单线态氧高效产生与荧光检测[D].北京交通大学.2019
[7].侯成敏,李娜,董海涛,张效林,曹从军.水溶性含氟聚合物杂化纳米SiO_2制备超疏水材料及性能[J].功能材料.2019
[8].李鹏举,吴晓辉,卢咏来,张立群.界面偶联剂KH550在氧化石墨烯/白炭黑纳米杂化填料中的应用研究[J].橡胶工业.2019
[9].陈剑燕.硅纳米线杂化太阳能电池技术探讨[J].科技资讯.2019
[10].崔建东.无机-有机杂化纳米固定化酶的设计及其催化性能[C].第十二届中国酶工程学术研讨会论文摘要集.2019