基于随机森林强化学习的干扰智能决策方法研究

基于随机森林强化学习的干扰智能决策方法研究

论文摘要

电磁频谱的主导权是现代化电子战制胜的关键。传统的通信对抗中干扰方的干扰模式相对固定单一,干扰效率低下。因此,研究频谱对抗环境中利用强化学习智能选择干扰信道策略对用户通信进行干扰,将干扰方的信道决策过程建模为一个马尔科夫决策过程(Markov Decision Making Process,MDP),并提出了一种基于随机森林强化学习的智能干扰算法。仿真结果表明,与文献[10]所提的智能干扰算法和基于感知的随机信道选择算法相比,所提随机森林强化学习算法干扰收敛速度最快。通过在线自主学习,干扰方可以快速寻找到用户的通信规律,对用户通信实施有效干扰。

论文目录

  • 0引言
  • 1系统模型及问题建模
  •   1.1系统模型
  •   1.2问题建模
  • 2基于随机森林强化学习的智能干扰算法
  • 3仿真结果
  • 4结语
  • 文章来源

    类型: 期刊论文

    作者: 裴绪芳,陈学强,吕丽刚,张双义,刘松仪,汪西明

    关键词: 电磁频谱,强化学习,智能干扰

    来源: 通信技术 2019年09期

    年度: 2019

    分类: 信息科技,工程科技Ⅱ辑

    专业: 武器工业与军事技术,电信技术,自动化技术

    单位: 中国人民解放军陆军工程大学通信工程学院,中央军委训练管理部信息中心

    基金: 国家自然科学基金(No.61971439),国家自然地区科学基金(No.61961010),江苏省自然科学基金(No.SBK2019020930),国家博士后科研基金(No.2018M633684)~~

    分类号: TP181;TN97

    页码: 2118-2124

    总页数: 7

    文件大小: 2774K

    下载量: 229

    相关论文文献

    • [1].基于迭代随机森林算法的糖尿病预测[J]. 长春工业大学学报 2019(06)
    • [2].基于改进随机森林的城市河流水生态健康评价研究[J]. 海河水利 2019(06)
    • [3].基于随机森林癫痫患者脑电数据的分析研究[J]. 中国数字医学 2020(01)
    • [4].基于局部均值分解和迭代随机森林的脑电分类[J]. 吉林大学学报(信息科学版) 2020(01)
    • [5].网贷平台数据的随机森林预测模型实证分析[J]. 宜宾学院学报 2019(12)
    • [6].采用单类随机森林的异常检测方法及应用[J]. 西安交通大学学报 2020(02)
    • [7].随机森林数据情感挖掘方法分析[J]. 通讯世界 2020(01)
    • [8].运用最大熵模型和随机森林模型对东北红松分布的模拟[J]. 东北林业大学学报 2020(03)
    • [9].基于随机森林算法的城区土地覆盖分类研究[J]. 河北省科学院学报 2020(01)
    • [10].运用随机森林模型对北京市林分蓄积生长量的预测[J]. 东北林业大学学报 2020(05)
    • [11].融合人工鱼群和随机森林算法的膝关节接触力预测[J]. 中国医学物理学杂志 2020(04)
    • [12].结合特征选择和优化随机森林的无线网络数据丢失重建[J]. 上海电力大学学报 2020(03)
    • [13].基于随机森林算法的耕地质量定级指标体系研究[J]. 华南农业大学学报 2020(04)
    • [14].一种基于随机森林的组合分类算法设计与应用[J]. 电子设计工程 2020(16)
    • [15].基于随机森林算法的日光温室内气温预测模型研究[J]. 中国农学通报 2020(25)
    • [16].基于因子分析和迭代随机森林方法的学生成绩综合评价——以都匀市某高中为例[J]. 黔南民族师范学院学报 2020(04)
    • [17].基于随机森林模拟的辽宁省降水量空间分布研究[J]. 陕西水利 2020(09)
    • [18].随机森林模型在膝关节炎患者结构特征与症状定量分析中的应用(英文)[J]. 磁共振成像 2020(10)
    • [19].基于特征选择的极限随机森林算法研究[J]. 计算机应用研究 2020(09)
    • [20].随机森林回归分析方法在代谢组学批次效应移除中的应用[J]. 中国卫生统计 2020(05)
    • [21].一种面向非均衡分类的随机森林算法[J]. 计算机与现代化 2018(12)
    • [22].随机森林模型和决策树模型在肝硬化上消化道出血预后中的应用[J]. 中国卫生统计 2019(02)
    • [23].基于随机森林的债券违约分析[J]. 当代经济 2018(03)
    • [24].基于改进网格搜索算法的随机森林参数优化[J]. 计算机工程与应用 2018(10)
    • [25].随机森林在城市不透水面提取中的应用研究[J]. 云南师范大学学报(自然科学版) 2017(03)
    • [26].一种顺序响应的随机森林:变量预测和选择[J]. 小型微型计算机系统 2017(08)
    • [27].基于随机森林回归的军械器材需求预测[J]. 自动化应用 2017(09)
    • [28].流式大数据下随机森林方法及应用[J]. 西北工业大学学报 2015(06)
    • [29].面向高维数据的随机森林算法优化探讨[J]. 商 2016(04)
    • [30].深度随机森林在离网预测中的应用[J]. 计算机科学 2016(06)

    标签:;  ;  ;  

    基于随机森林强化学习的干扰智能决策方法研究
    下载Doc文档

    猜你喜欢