导读:本文包含了圆柱尾迹论文开题报告文献综述、选题提纲参考文献及外文文献翻译,主要关键词:圆柱,雷诺,全局,能量,标量,关系式,平均。
圆柱尾迹论文文献综述
邢鹏飞,孙志强[1](2019)在《低雷诺数开缝圆柱绕流尾迹流场特性》一文中研究指出为了揭示开缝对圆柱尾迹流场的影响,采用数值模拟方法对低雷诺数无限大流场中开缝圆柱绕流进行研究,以相对缝宽(即缝宽/圆柱直径)和开缝角为变量,斯特劳哈尔数、阻力系数和升力系数为特征参数,分析不同开缝条件下旋涡脱落和圆柱受力的演化过程。研究结果表明:圆周压力分布受相对缝宽和开缝角的影响较小,圆周压力最小点位置随相对缝宽和开缝角的增大而后移;当相对缝宽为0.1时,最大后移幅度为6.11°;边界层分离点随开缝角增大而后移,而边界层分离点随相对缝宽的变化则因开缝角范围不同而不同;随着开缝角增大,开缝圆柱所受阻力减小,当相对缝宽为0.1、开缝角为90°时,可减阻14.63%,升力先增加后减小,旋涡脱落频率增大。(本文来源于《中南大学学报(自然科学版)》期刊2019年04期)
皇甫宇澄,孙志强[2](2019)在《带弹性分隔板的低雷诺数圆柱绕流尾迹演化特性》一文中研究指出为了利用分隔板有效控制圆柱绕流,对雷诺数为100的带弹性分隔板的圆柱绕流开展数值模拟,研究分隔板长度和弹性模量对尾迹流场演化特性的影响,探索斯特劳哈尔数、阻力系数、升力系数和最大振幅率等特征参数的变化规律。研究结果表明:分隔板长度和弹性模量对圆柱绕流尾迹演化影响显着,尾迹流场出现交替脱落漩涡和对称不分离等不同流动结构;斯特劳哈尔数、阻力系数均值、升力系数均方根值和最大振幅率随分隔板长度和弹性模量的变化趋势基本一致,当弹性模量为2.0MPa时,斯特劳哈尔数在分隔板量纲一长度为1.2和2.8处出现极大值;当分隔板量纲一长度为1.2时,斯特劳哈尔数、阻力系数均值、升力系数均方根和最大振幅率的最大值分别为0.302,2.981,1.621和0.280。(本文来源于《中南大学学报(自然科学版)》期刊2019年02期)
王勇,郝南松,耿子海,王万波[3](2018)在《基于时间解析PIV的圆柱绕流尾迹特性研究》一文中研究指出采用时间解析PIV(采样频率为1000Hz)在0.55m×0.4m声学风洞中测量了直径D=20mm圆柱后方7.5倍直径、圆柱两侧各3.3倍直径所围成范围内的绕流尾迹在雷诺数Re=2.74×104下的非定常流场。针对PIV获得的速度场数据,进行流场和频谱特性分析,探讨了圆柱绕流尾迹中的平均流场和脉动流场特性,以及旋涡脱落的频率特性。提出了基于速度场之间相关性的相位平均分析方法,系统分析了圆柱上下两侧旋涡交替生成、脱落、发展并耗散的完整演化过程。结果表明:在圆柱后方存在一个低速回流区,其中心0.8 D的位置附近是流动结构变化最剧烈的区域;圆柱后方1.9 D位置附近是上/下两侧脱落旋涡交汇、耦合的区域,湍流脉动最强;圆柱绕流尾迹中,旋涡脱落频率对应的斯特劳哈尔数稳定在0.2左右;基于速度场之间相关性的相位平均分析方法简单有效,可以准确地识别绕流尾迹中旋涡交替脱落和发展的时空演化过程,在非定常流场测量方面具有普遍推广意义。(本文来源于《实验流体力学》期刊2018年01期)
沙飞宇[4](2017)在《圆柱尾迹诱导平板边界层旁路转捩数值模拟研究》一文中研究指出转捩,指流动从层流到湍流的过渡,表征一种流动变化情况。按流动从环境感受到扰动的强弱和流动转变的路径,转捩大致可以分为规则转捩和旁路转捩两种,其中旁路转捩以其过程的复杂多变和重要的工程应用价值而受到广泛关注。本文基于大涡模拟的数值计算方法,针对典型的圆柱/平板结构,对圆柱尾迹诱导平板边界层旁路转捩的过程开展研究。基于大涡模拟的基本思想,引入壁面适应局部涡粘的亚格子应力模型和Boussinesq假设,对流动基本方程Navier-Stokes方程进行封闭,建立适应于圆柱/平板模型的数值计算方法。在此基础上对圆柱尾迹诱导平板边界层旁路转捩开展数值模拟研究,获得了流场的统计特性,并与前人的实验结果进行对比,验证了数值计算方法的有效性。分别针对雷诺数和圆柱高度变化对圆柱尾迹与平板边界层相互作用的影响开展了大涡模拟研究。分析了旁路转捩过程的流场流动特性,包括流动时均特性,流动脉动特性和湍动能特性,研究了圆柱尾涡的脱落,边界层条带结构,二次涡的产生以及二次涡与圆柱尾迹或平板边界层相互作用向下游的发展演化,给出了雷诺数和圆柱高度对流动转捩特性的影响规律。(本文来源于《哈尔滨工业大学》期刊2017-06-01)
董振营,周本钊,孙志强,蒋赟,周天[5](2016)在《矩形管道内低雷诺数圆柱绕流尾迹演化特性》一文中研究指出为了揭示有限管道壁面对圆柱绕流尾迹演化特性的影响,采用基于有限容积法的数值模拟方法,对矩形管道内雷诺数为100的叁维圆柱绕流尾迹流场进行计算分析,探讨阻流比和长径比对圆柱表面和尾迹流场中压力分布的影响。研究结果表明:圆柱前、后驻点的压力系数受展向位置影响较大,后驻点压力系数与旋涡脱落状态有关;时均压力系数受管道端壁影响显着,沿前驻点至后驻点圆柱表面时均压力系数先减小后增大;在远离端壁一定区域内,尾迹流态为涡街;而在靠近端壁的一定区域内,尾迹呈现出近似双子涡形态;圆柱表面相同位置处的时均压力系数基本上随阻流比的增大而增大,随长径比的增大而减小。(本文来源于《中南大学学报(自然科学版)》期刊2016年01期)
蒋赟,孙志强,周孑民[6](2015)在《阻流比对平行壁面间圆柱绕流尾迹演化的影响》一文中研究指出为了揭示阻流比对圆柱绕流尾迹演化特性的影响,采用多块O型网格,对低雷诺数下较宽阻流比范围的平行壁面间圆柱绕流进行数值模拟研究,讨论不同阻流比下壁面对圆柱绕流尾迹形态和尾迹转捩的影响,得到尾迹转捩临界雷诺数、双子涡和旋涡脱落的特征参数。研究结果表明:圆柱绕流尾迹转捩和尾迹形态受阻流比影响显着,尾迹转捩的第一、第二临界雷诺数随阻流比而增加,当阻流比超过临界值后,尾迹中出现2个附着于壁面的回流区;斯特劳哈尔数和阻力系数均值随阻流比而增加,而升力系数均方根在不同阻流比范围内则呈现出不同的变化规律。(本文来源于《中南大学学报(自然科学版)》期刊2015年11期)
窦华书,贲安庆[7](2015)在《基于能量梯度理论的剪切驱动来流圆柱绕流尾迹失稳的物理机理研究》一文中研究指出采用计算流体力学(CFD)的方法分别模拟了无限域中Re=26,100,200和400工况下的圆柱绕流流动。其中用Navier-Stokes方程模拟了Re=26和Re=100工况下的层流圆柱绕流流动。用大涡模拟的方法模拟了Re=200和Re=400工况下的湍流圆柱绕流流动。(本文来源于《中国力学大会-2015论文摘要集》期刊2015-08-16)
曹华丽,陈建钢,周同明,周裕[8](2015)在《圆柱绕流尾迹中涡量与温度标量的相平均分析》一文中研究指出实验研究了圆柱绕流尾迹中的叁维涡拓扑结构特性以及湍流动量、热量输运特性。利用8支热线和4支冷线相结合的叁维涡量探针分别测量从x/d=10~40的速度和温度脉动,采用相平均方法将圆柱绕流尾迹中的大尺度相干结构提取出来,剩余部分包括中等尺度相干结构和随机结构。结果发现:在x/d=10处ωz与ωx的等值线具有很强的相似性;随着流向的发展,ωx和ωy两分量受到更多来自两涡之间的流向"肋"结构的影响而呈现相似特征,证明了涡结构的叁维特性。由于受到来自展向涡和流向肋结构的共同作用,导致展向热输运珦w*珓θ*在不同位置表现不一样,正涡中的珦w*珓θ*受到流向肋的拉伸作用而沿着分形线朝着鞍点偏移;而负涡内的珦w*珓θ*由于受到展向涡的卷起使得珦w*珓θ*和珘ω*z形状相似。随着流向的发展,展向热输运移向涡边界处,对卡门涡内净热量传递到周围流体中有贡献。同时还发现相干结构对横向和展向热输运的影响很相似。(本文来源于《实验流体力学》期刊2015年01期)
马云驰,余宇轩,谢锡麟,麻伟巍[9](2014)在《基于多谱分析实验研究正交圆柱尾迹的全局空间动力学》一文中研究指出该文是对低雷诺数下的正交圆柱尾迹进行全局空间动力学实验研究。在不同的圆柱间距和圆柱直径比的工况下,基于功率谱筛选出谐波性质明显的工况,然后进行多谱分析。多谱分析基于一维全局能量关系式,研究发现线性-非线性机制和非线性机制在各个谐波分量上均有体现,而线性机制则出现在基频上,说明正交圆柱尾迹的流场以非线性机制为主导。(本文来源于《水动力学研究与进展A辑》期刊2014年06期)
贲安庆,窦华书[10](2014)在《圆柱绕流尾迹涡街的二次失稳的物理机理研究》一文中研究指出采用大涡模拟方法计算了Re=200条件下的无限域中的圆柱绕流流动,计算所得的阻力系数Cd和斯特劳哈尔数St与文献中的实验数据和数值结果一致。研究发现,在圆柱后面的下游尾迹中,随着尾迹流动的发展,上游产生的涡街先是消失,然后又发生了二次失稳,即形成了二次卡门涡街。得到了旋涡脱落频率的演化规律和尾迹发生一次失稳及二次失稳的全部过程。然后用能量梯度理论研究了圆柱绕流流场尾迹流动的稳定性,解释了一次失稳、涡街消失和二次涡街形成的物理机理。结果发现,圆柱绕流流场的失稳是由圆柱两侧剪切层处零速度梯度导致的较高的机械能梯度引起的。随着圆柱后面旋涡流动的发展,尾迹中的能量梯度函数值逐渐减小,这样导致了涡街的消失。随着向下游流动,由于尾迹中扰动的作用,导致能量梯度函数值再次增大,引起了尾迹的二次失稳。(本文来源于《第八届全国流体力学学术会议论文摘要集》期刊2014-09-18)
圆柱尾迹论文开题报告
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
为了利用分隔板有效控制圆柱绕流,对雷诺数为100的带弹性分隔板的圆柱绕流开展数值模拟,研究分隔板长度和弹性模量对尾迹流场演化特性的影响,探索斯特劳哈尔数、阻力系数、升力系数和最大振幅率等特征参数的变化规律。研究结果表明:分隔板长度和弹性模量对圆柱绕流尾迹演化影响显着,尾迹流场出现交替脱落漩涡和对称不分离等不同流动结构;斯特劳哈尔数、阻力系数均值、升力系数均方根值和最大振幅率随分隔板长度和弹性模量的变化趋势基本一致,当弹性模量为2.0MPa时,斯特劳哈尔数在分隔板量纲一长度为1.2和2.8处出现极大值;当分隔板量纲一长度为1.2时,斯特劳哈尔数、阻力系数均值、升力系数均方根和最大振幅率的最大值分别为0.302,2.981,1.621和0.280。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
圆柱尾迹论文参考文献
[1].邢鹏飞,孙志强.低雷诺数开缝圆柱绕流尾迹流场特性[J].中南大学学报(自然科学版).2019
[2].皇甫宇澄,孙志强.带弹性分隔板的低雷诺数圆柱绕流尾迹演化特性[J].中南大学学报(自然科学版).2019
[3].王勇,郝南松,耿子海,王万波.基于时间解析PIV的圆柱绕流尾迹特性研究[J].实验流体力学.2018
[4].沙飞宇.圆柱尾迹诱导平板边界层旁路转捩数值模拟研究[D].哈尔滨工业大学.2017
[5].董振营,周本钊,孙志强,蒋赟,周天.矩形管道内低雷诺数圆柱绕流尾迹演化特性[J].中南大学学报(自然科学版).2016
[6].蒋赟,孙志强,周孑民.阻流比对平行壁面间圆柱绕流尾迹演化的影响[J].中南大学学报(自然科学版).2015
[7].窦华书,贲安庆.基于能量梯度理论的剪切驱动来流圆柱绕流尾迹失稳的物理机理研究[C].中国力学大会-2015论文摘要集.2015
[8].曹华丽,陈建钢,周同明,周裕.圆柱绕流尾迹中涡量与温度标量的相平均分析[J].实验流体力学.2015
[9].马云驰,余宇轩,谢锡麟,麻伟巍.基于多谱分析实验研究正交圆柱尾迹的全局空间动力学[J].水动力学研究与进展A辑.2014
[10].贲安庆,窦华书.圆柱绕流尾迹涡街的二次失稳的物理机理研究[C].第八届全国流体力学学术会议论文摘要集.2014