山东淄建集团有限公司山东淄博255000
摘要:深基坑支护施工是建筑工程建设中不可缺少的关键内容,直接关系到建筑工程项目的整体质量。因此,现代建筑企业必须高度重视深基坑支护施工技术的科学管理应用工作,结合各个环节实际工作情况,有针对性的进行支护技术优化调节。
关键词:建筑施工;深基坑支护;施工技术;管理
引言
深基坑支护施工技术的应用对于建筑工程的施工作业质量以及效率具有直接性的影响,所以,完善建筑深基坑支护技术的管理工作极具发展意义。可是从目前我国建筑企业深基坑支护技术的实际管理情况来看,与西方发达国家相比依然存在很大的提升空间,基于此,我们还需增加专业研究力度,在实践的过程中积极发掘问题并及时进行解决和完善,从而推进我国建筑行业的稳定健康发展。
1深基坑支护技术简介
深基坑支护技术是对建筑施工地的基坑周围和地下情况采取一定的保护、支挡或者加固措施,保证施工环境安全,而深基坑支护技术在建筑工程中的广泛应用使支护种类越来越多,包括钢板柱支护、土钉墙支护、地下连续墙支护、深层搅拌水泥桩支护、柱列式灌注桩排桩支护等。当前的深基坑支护技术在大型高层建筑中应用较为广泛,对建筑用地的资源利用提供了技术保障,对城市建设的发展具有重要作用。为保证建筑施工的顺利进行,要对建筑施工地点进行地质勘测,对其土壤条件、地形特点进行分析测算。根据勘测结果选择适合的支护技术进行施工。除此之外,深基坑支护技术也要重视施工质量的监察,一旦在施工中出现质量问题就会对建筑造成巨大影响,既对建筑单位造成了经济损失,也对周围建筑的安全造成了影响。
2建筑工程施工中深基坑支护的施工技术管理
2.1制定科学的设计方案
参照项目的实际占地面积、土壤条件以及深基坑的边缘距离等相关因素制定科学的设计方案,在进行实际施工作业的过程中依照项目的实际条件而选择最佳基坑支护形式,在进行预先环境考察工作中重点针对建筑项目的实际占地面积,基坑的边沿距离以及该地区的自然环境包括土壤条件等予以全面而准确的测量和分析,并认真落实测量数据的记录,从而为施工方案的制定提供有力参考,促使该方案能够在满足施工标准的同时全面提高建筑施工的质量。
2.2加强深基坑支护施工的投入,完善相关规章制度
在建筑工程施工中,要加强深基坑支护施工方面的投资力度,管理部门要保证资金分配的合理性,做好深基坑支护施工质量的检测工作,在施工之前充分了解所要开发的地层结构。深基坑支护施工管理与众多部门的工作人员有着紧密的联系,必须要明确部门人员的权责范围,确定第一责任人,以免在发生重大事项时出现权责相互推诿现象,给予深基坑支护施工技术管理强大的制度性保障。
2.3加大施工技术管理检测力度
在客观因素的影响下,深基坑支护结构的几何尺寸极容易出现与设计图不符现象,在深基坑开挖与支护结构施工之前,要进行测量放样,在放样到作业面时,要结合设计图纸,将支护结构几何尺寸误差率降至最低。严格检测支护工程中所需的材料规格和性能,杜绝不合格产品的使用。在深基坑支护施工进行时,还要重点监测地下水和支护结构的位移、沉降等情况其中,地下水位监测带有一定的周期性,要在监测点将监测设备安装到位,然后展开监测。对支护结构位移、沉降监测时,要将监测点设置在支护结构顶部、底部以及中间位置,安排专门的巡视人员,做好相应的巡视和记录工作,为后续工作奠定坚实的基础。
2.4防止地下水的干扰
地层之下的水源会对建筑基坑支护结构造成很大的干扰,大部分地下水渗透的地点都会产生地面下沉等问题,若条件允许,应适当进行人工降雨,通过这种形式来降低地下水对深基坑支护结构造成的压力,从而改善土壤条件,保障相关操作的顺利进行。如果条件不允许,那么就应以构建止水帷幕的方法进行地下水的阻挡,从而保障基坑开挖工程的质量。
3深基坑支护技术在建筑工程中的应用
3.1土钉支护技术应用
土钉支护技术是将土钉和土体结合产生的作用力对深基坑的边坡进行加固,增强建筑的稳定性。在进行土钉支护作业时,要注意土地的拉力和承载力,防止土体在土钉作用力的影响下变形,进而影响建筑的稳定性。因此,在进行深基坑施工前要对土钉进行拉拔试验,根据试验结果确定土钉在实际施工中所用的实际拉拔力,除此之外,也要对钻孔深度进行试验,对钻孔深度进行记录为后期的灌浆施工质量提供保障。在灌浆施工中,要对水泥量和压力进行测量和控制,保证钻孔灌浆的质量,一旦发生问题及时进行补浆作业,确保土钉支护技术的质量,为建筑施工提供保障。
3.2锚杆支护技术应用
深基坑锚杆支护施工技术的主要作用是通过使用高质量锚杆提高深基坑支护的稳固性。当施工队伍在建筑施工中将基坑开挖到一定深度后,可以采取利用锚杆插入基坑岩土层的方式,将锚杆有效插入到与侧支护体系相互连接后就可以结束插入作业,然后对每根锚杆施加合理的预应力,保障锚杆的稳定性。值得注意的是,施工管理人员要加强对锚杆支护后期检查维护工作,确保锚杆支护结构的完善性,能够联合深基坑支护结构,发挥出共同的抗外界破坏力,最大程度提高建筑工程的安全质量。
3.3钢板桩支护技术应用
钢板间的衔接为支护结构提供了便利条件,通过将钢板搭建成等腰梯形,并用螺丝加固,不仅能将钢板连接成钢板墙,同时还有效避免了墙壁的坍塌与渗水等问题出现。为了进一步提升钢板墙的防护能力,通过设置内挑式钢管梁,既提升了其承压能力,也获得了相应的安全保障。
3.4排桩支护技术应用
排桩支护结构所构成的桩结构类型比较多,比如有人工挖孔庄类型、混凝土板桩类型、钢板桩类型等。排桩支护结构在实际的应用类型也有很多,比如有连续排桩支护结构、柱列式排桩支护结构、组合式排桩支护结构等等。不同的排桩支护结构所应用的范围不一样,比如连续排桩支护结构主要是应用在土质比较松软,比较难形成土拱的基坑中,在施工过程中,施工人员需要注意将所有的支护桩都进行紧密的排列,然后再进行灌浆,从而保证其防水效果。柱列式排桩支护结构主要是应用在土质比较好、地下水水位比较低,容易形成土拱的基坑中,在施工过程中,施工人员可以将挖孔桩作为基坑的支护结构进行使用。组合式排桩支护结构主要是应用在土质比较松软、地下水水位比较高的基坑中,在施工过程中,施工人员需要通过水泥搅拌的方式来进行柱桩的施工,然后以排桩的形式来组成支护结构,从而更好地起到防渗漏的作用。
3.5地下连续墙
地下连续墙具有整体刚度大的特点和良好的止水防渗效果,适用于地下水位以下的软粘土和砂土等多种地层条件和复杂的施工环境,尤其是基坑底面以下有深层软土需将墙体插入很深的情况。地下连续墙发展到既是基坑施工时的挡土围护结构,又是拟建主体结构的侧墙,如支撑得当,可较好地控制软土地层的变形。现阶段,施工单位对工程检验工作尚未健全机制,阶段性工程竣工之后,未能及时安排人员进行检验处理,一些潜在性的工程隐患未能及时发现。
结束语
早期深基坑结构支护施工缺乏施工操作机制,工程单位盲目的追求进度与质量等标准,从而造成建筑施工失去了秩序性,这将严重阻碍了整个建筑设施改造进程,现在建筑工程规划实现了优化转型,施工单位在整个工程建设当中将起到至关重要的作用,对质量和安全以及检验等工作起到了保障性的作用,从而很好的体现出了施工操作流程的可持续发展。
参考文献
[1]郭自灿.论建筑工程施工中深基坑支护的施工技术管理[J].江西建材,2017(11):72,77.
[2]皮亮,饶乐.深基坑支护施工技术在建筑工程中的应用[J].南方农机,2017,48(14):77.
[3]黄嵩.建筑深基坑支护施工技术分析[J].江西建材,2017(7).