网格絮凝池在净水中的应用

网格絮凝池在净水中的应用

摘要:通过机理分析和工程实例,介绍利用微涡旋原理的小孔眼网格絮凝池在净水中的应用。

关键词:涡旋混凝;小孔眼网格;净水

在给水净化处理的混凝、沉淀、过滤诸多工艺中,混凝是其中的核心。天然水体中分散着相当大部分由无机胶粒组成的杂质,如:黏土、金属氧化物、金属氢氧化物和金属碳酸盐,还有来自腐殖质的有机胶体物质以及有生命的微生物(藻类或细菌)。城镇用水及工业废水处理中,絮凝(混凝)过程是应用最普遍的关键环节之一。絮凝效果的好坏,直接决定着后续单元过程的运行工况、处理费用及最终出水水质。实践证明,设计时混凝工艺选定的合理,不仅可提高出水水质,还能达到节能节约降低运行费用的目的。

絮凝是给水处理的最重要的工艺环节,滤池出水水质主要由絮凝效果决定的。传统廊道反应、回转孔室反应以及回转组合式隔板反应的絮凝工艺,水在设备中停留20~30分钟,水中尚有很多絮凝不完善的小颗粒。近年来,国内出现了普通网格反应;国外推出了折板式与波形板反应设备,使絮凝效果有了比较明显地改善。但由于人们对絮凝的动力学本质认不清楚,也就妨碍了絮凝效果的进一步提高。

1絮凝的动力学致因

絮凝是微小颗粒接触和碰撞的过程。

颗粒在水中的接触碰撞,主要有三种途径:

(1)颗粒的布朗运动;

(2)颗粒间的沉速差异;

(3)流动水体的水力作用。由布朗运动所造成的颗粒碰撞速率与水温成正比,与颗粒浓度平方成正比,而与颗粒尺度无关,实际上只有小颗粒才有布朗运动,随着颗粒粒径增大,布朗运动将逐渐减弱,当颗粒粒径大于1μm时,布朗运动基本消失。

对于一般絮凝池来说,絮体颗粒一般从微米级增至毫米级以上,因此由布朗运动产生的颗粒接触碰撞可忽略不计。至于因沉速差异而造成的颗粒接触碰撞,在沉淀池中有一定的作用,然而在反应池中,由于水流的强烈紊动,相对来说沉速差异的作用将是微小的。特别是在絮凝的初始阶段,颗粒细小,本身的沉速就不大,不同颗粒间的沉速差异也就更小,因此对于因沉速差异而产生的接触,在反应池中一般可以忽略不计;基于以上分析可以断定:流动水体的水力作用对加速颗粒絮凝起主导作用。这是因为水是连续介质,水中的速度分布是连续的,没有任何跳跃,水中两个质点相距越近其速度差越小,当两个质点相距为无究小时,其速度差亦为无穷小,即无速度差。水中的颗粒尺度非常小,比重又与水相近,故此在水流中的跟随性很好。如果这些颗粒随水流同步运动,由于没有速度差就不会发生碰撞。由此可见要想使水流中颗粒相互碰撞,就必须使其与水流产生相对运动,这样水流就会对颗粒运动产生水力阻力。由于不同尺度颗粒所受水力阻力不同,所以不同尺度颗粒之间就产生了速度差。这一速度差为相邻不同尺度颗粒的碰撞提供了条件。如何让水中颗粒与水流产生相对运动呢?最好的办法是改变水流的速度。因为水的惯性(密度)与颗粒的惯性(密度)不同,当水流速度变化时它们的速度变化(加速度)也不同,这就使得水与其中固体颗粒产生了相对运动。所以说絮凝的动力学致因是惯性效应。

2涡旋在混凝处理中的作用

改变速度方法有两种:

一是改变水流时平均速度大小。水力脉冲澄清池、波形板反应池、孔室反应池以及滤池的微絮凝主要就是利用水流时平均速度变化形成惯性效应来进行絮凝;

二是改变水流方向。因为湍流中充满着大大小小的涡旋,因此水流质点在运动时不断地在改变自己的运转方向。当水流作涡旋运动时在离心惯性力作用下固体颗粒沿径向与水流产生相对运动,为不同尺度颗粒沿湍流涡旋的径向碰撞提供了条件。不同尺度颗粒在湍流涡旋中单位质量所受离心惯性力是不同的,这个作用将增加不同尺度颗粒在湍流涡旋径向碰撞的几率。涡旋越小,其惯性力越强,惯性效应越强絮凝作用就越好。由此可见湍流中的微小涡旋的离心惯性效应是絮凝的重要的动力学致因。由此可看出,如果能在絮凝池中大幅度地增加湍流微涡旋的比例,就可以大幅度地增加颗粒碰撞次数,有效地改善絮凝效果。因而我们可以在池体重科学地布置小孔眼网格,由于过网水流的惯性作用,使过网水流的大涡旋变成小涡旋,小涡旋变成更小的涡旋。

根据这一理论发明了小孔眼网格絮凝设备,增设小孔眼网格后有如下作用:

(1)水流通过格网的区段是速度激烈变化的区段,也是惯性效应最强、颗粒碰撞几率最高的区段;

(2)小孔眼格网之后湍流的涡旋尺度大幅度减少,微涡旋比例增强,涡旋的离心惯性效应增加,有效地增加了颗粒碰撞次数;

(3)由于过网水流的惯性作用,矾花产生强烈的变形,使矾花中处于吸附能级低的部分,由于其变形揉动作用达到高吸能级的部位,这样就使得通过网格之后矾花变得更密实。絮凝效果更好。因为大幅度的提高了反应效率,絮凝时间可缩短至5~10min;

(4)出水质量优,在投加相同混凝剂的情况下,微涡流混凝工艺所产生的絮体质量明显地优于传统工艺,因而具有很好的沉降性能。笔者在澄清池改造的实践中,在沉淀区体积不变的情况下,产水量提高一倍,出水浊度稳定在3度以下,滤池工作周期延长,节约了大量的反冲洗水。

抚顺市东洲水厂设计能力为2万立方米/天,原处理工艺流程为:原水→一级泵站→虹吸滤池→清水池→管网。该水厂原水取自大伙房水库,1994年以前水质浊度常年在20NTU以内,因此一直未建滤前处理设施。1995年“七·二九”特大洪水之后,水库水质发生显著变化,该水厂持续几个月出水水质不达标,对此用户反映极为强烈,因此公司决定完善处理工艺,增加反应沉淀工艺。

东洲净水厂反应沉淀池扩建工程于1996年5月开始施工,7月27日竣工。反应采用小孔眼网格絮凝设备,反应时间为10min;7月28日,突降暴雨,原水浊度达500NTU以上,该设备在此情况下开始启动,经2h调试运行以后,沉后水浊度达到3NTU以下,确保了水厂的正常运行。

从2年多的运行情况来看,该项技术有以下优点:

(1)经济效益显著。由于反应时间短,沉淀池上升流速高,大大节省了反应沉淀池面积,从而节省基建投资达30%以上;

(2)处理水质好,沉后水浊度可稳定在3NTU以下;

(3)启动方便,抗冲击负荷强,运行操作简单;

(4)日常运行费用低,由于絮凝沉淀后水水质好,节约了反冲洗水量,延长了滤料的更换周期。

小孔眼网格絮凝设备,具有投资省、占地少,处理效率高、水质好、工期短、见效快,制水成本低、适应广泛等特点,不仅对低温低浊、汛期高浊水处理效果好,同时对其它特殊原水也具有较好的处理效果。

网格絮凝工艺不仅对于新建水厂,对老水厂技术改造也具有优势。但是,网格絮凝工艺需要通过更多的工程实践来证明其优秀,在设计理论和系列化、标准化方面也有待进一步的完善。

标签:;  ;  ;  

网格絮凝池在净水中的应用
下载Doc文档

猜你喜欢