非线性系统建模论文_熊中刚,刘忠,罗素莲

导读:本文包含了非线性系统建模论文开题报告文献综述、选题提纲参考文献及外文文献翻译,主要关键词:系统,建模,模糊,向量,方法,摩擦力,分岔。

非线性系统建模论文文献综述

熊中刚,刘忠,罗素莲[1](2019)在《基于模糊加权最小二乘支持向量回归的非线性系统建模方法》一文中研究指出针对非线性系统建模时边界数据会产生较大的建模偏差、数据计算负荷大以及如何从数据集中选取K个近邻点才能保证其性能缺乏统一标准等问题,提出了基于模糊加权最小二乘支持向量回归的非线性系统建模方法。该方法融合了模糊加权机理与最小二乘支持向量回归的优点,通过引入重迭因子,在保证建模精度(均方根误差越小越好)的情况下,去除建模过程中的一些非重要数据,减小建模方法的运算时间,并能将全局与局部建模方法相融合有效解决局部建模方法所产生的边界效应问题。实验验证结果表明,分别对几种方法从训练/测试均方根误差、不同重迭因子、计算时间方面比较都有明显的有效性和优越性。(本文来源于《探测与控制学报》期刊2019年05期)

姜明佐[2](2019)在《锥模糊系统及其在非线性系统建模中的应用》一文中研究指出模糊系统能有效地对具有不确定性的复杂非线性系统建模,可以充分利用领域专家通过语言描述的经验知识,使得模糊系统易于理解,因此模糊系统在实际系统建模和控制中有很多应用.理论上,模糊系统的精度与模糊规则数有关,模糊规则越多,所建模糊模型精度越高.然而,实际操作中,当对某些非线性系统进行模糊建模时,单纯地增加模糊规则数对于模糊模型精度的提高非常有限,有时反而极大地增加了整个建模过程的计算量,导致模糊规则的冗余和模型的过拟合问题,故复杂度和精度的折中成为了模糊系统辨识研究中的热点问题.因此,如何设计简洁有效的模糊系统,提高其逼近精度,并降低计算复杂度就成为本文研究的主要出发点.本文的主要工作包括以下几个方面:(1)将一维空间的模糊集推广到二维空间,提出了锥模糊集的概念,应用锥模糊集去构造模糊系统,得到了基于模糊网格划分的Mamdani型和T-S型锥模糊系统,并详细讨论了锥模糊系统的推导过程及设计步骤.传统模糊系统模糊规则前件的计算需要通过t-范数来实现,在锥模糊系统推导过程中无需t-范数计算,从而简化了模糊系统的结构和运算.证明了锥模糊系统的泛逼近性和逼近精度,其中四棱锥模糊系统和叁棱锥模糊系统分别具有一阶和二阶逼近精度.仿真实验表明,锥模糊系统能够用较少的规则数达到较高的精度.(2)为解决模糊控制中被控对象难于建模的问题,提出了基于Mamdani和T-S型四棱锥和叁棱锥模糊系统的建模方法.传统的模糊推理建模法得到的HX方程是分片常系数非线性模型,而基于Mamdani和T-S型叁棱锥模糊系统的建模方法可得到分片常系数线性微分方程.利用基于Mamdani和T-S型四棱锥和叁棱锥模糊系统的建模方法,分别对二阶时不变自由运动系统进行建模,得到了系统的输入输出模型和状态空间模型.通过仿真实验比较,说明了基于锥模糊系统建立的系统模型具有较高的精度.(3)针对模糊系统中模糊规则数和模糊模型结构难以确定的问题,提出一种优化初始聚类中心的K-means算法,从而能够合理地自动获取初始聚类中心并确定聚类数(规则数).将改进的K-means算法用于锥模糊系统辨识过程中的输入空间划分,以聚类中心作为锥隶属度函数的峰值点,克服了聚类算法用于模糊系统建模时需预先确定聚类数的缺陷.仿真实验对Mackey-Glass混沌时间序列、Box-Jenkins煤气炉数据和汽车MPG数据这叁个系统辨识的基准问题进行研究,结果表明基于改进的K-means算法的锥模糊系统辨识方法简单快速且逼近精度较高.(4)针对模糊系统的规则数随着维数增加而呈指数增长的问题,提出了规则数随着维数增加而线性增长的递阶锥模糊系统.给出了递阶锥模糊系统的两种基本类型的具体推导过程及其辨识方法:通过改进的K-means聚类算法确定系统结构,采用遗传算法优化规则参数.在Mackey-Glass混沌时间序列、Box-Jenkins煤气炉数据和非线性系统的辨识仿真中,验证了递阶锥模糊系统在准确性、计算效率和对噪声的鲁棒性方面的优势。(本文来源于《大连理工大学》期刊2019-06-01)

韩振宇[3](2019)在《轻度混合动力汽车启停系统建模与非线性控制方法研究》一文中研究指出怠速工况作为汽车发动机运行的五大基本工况之一,每年都消耗掉了许多的燃料。怠速启停技术的出现不仅解决了发动机这种“出工不出力”的现象,而且更好的落实了节能减排的理念,正凭借其经济环保的优势受到成熟而且广泛的应用。带有启停技术的轻度混合动力柴油机汽车由于对原车的改动较小,成本较低,同时结合柴油机热效率高和排放的有害气体少等优点,使得其具有更好的燃油经济性和清洁环保性,具有广阔的市场前景。但是由于轻度混合动力柴油汽车不能实现低速下的纯电动运行,导致了发动机需要频繁启停,如果对启停动作不能实现有效的控制,不仅会造成更多的燃油消耗,而且还会严重影响驾驶员的驾驶体验。本文针对轻度混合动力汽车启停系统的建模和控制问题展开研究,通过对启停系统发动机转速的跟踪控制,实现了轻度混合动力柴油车的平稳快速启停。首先,根据带有传动启动发电一体机(BSG)的轻度混合动力柴油车结构特征和功能特性,在机电一体化仿真软件AMESim中分别搭建了BSG模型、带传动系统模型以及传统启动电机模型,与软件中的四冲程柴油发动机模型进行了组合和参数匹配,共同构建了轻度混合动力柴油车启停系统仿真模型,同时通过对柴油发动机模型特征变化曲线的分析和启停系统的动力学性能分析与对比,从功能上验证了所搭建的仿真模型的合理性。然后,根据车辆的行驶状态以及驾驶员的操作,设计了启停系统的控制策略,指定启停功能关闭开启的条件,并保证在发动机启停功能开启时,可以正确判断驾驶员的启停意图。针对发动机的启停控制问题,结合BSG电机启动过程中发动机不喷油的特点,设计了可以估计出缸内压缩阻力矩变化的前馈项,用于削弱由于柴油机高压缩比导致的发动机转速大的波动。在此基础上,通过对发动机启停系统模型的线性化处理得到了面向控制的线性误差模型,设计了基于线性模型预测控制的线性发动机启停控制器,优化求解出BSG电机的扭矩需求并施加给电机消除发动机的转速偏差,实现了发动机的平稳启停,并通过AMESim与Simulink联合仿真验证控制算法的有效性。最后,为了避免由于忽略了启停系统非线性动态特性对系统控制效果的不良影响,提出了基于非线性模型预测控制的发动机启停控制方法,并选用粒子群优化算法用于非线性启停控制器的优化求解,进而减少调节参数,降低在线求解的计算量。通过AMESim与Simulink的在多组不同的怠速工况下联合仿真,验证了所设计的非线性启停控制器的有效性,同时可以看出相比于线性模型预测控制器,非线性控制器在瞬态和稳态均具有更好的控制效果。(本文来源于《吉林大学》期刊2019-06-01)

陈欢[4](2019)在《涡轮增压汽油机气路系统建模与非线性控制方法研究》一文中研究指出为了满足人们对汽车不断提升的性能要求和日益严苛的排放法规,汽油机废气涡轮增压技术应运而生,该技术通过回收废气能量来增加进入气缸的空气量,使得气缸内的燃烧更为充分,进而可以有效提高同等排量发动机的输出扭矩,同时提升发动机的燃油经济性和排放性,因此得到广大汽车厂商和消费者的青睐。汽油机涡轮增压技术是在传统的汽油机上匹配合适的涡轮增压器,这种结构增加了汽油机气路系统的复杂度和耦合度,给涡轮增压汽油机气路系统建模与控制带来了一定的挑战。本文以四缸涡轮增压汽油机为研究对象,在以扭矩需求为中心的汽油机控制架构下,研究了涡轮增压汽油机气路系统建模与非线性控制方法。根据涡轮增压汽油机的结构特性和工作原理,基于模块化的建模框架将其分为多个子模型,在机电一体化仿真软件AMESim中搭建了各个子模块的模型,并给出了各个模块的数学表达形式,进而通过各个子模块的组合和模型参数匹配得到涡轮增压汽油机仿真模型,通过与同排量的自然吸气汽油机动力特性进行对比,验证了涡轮增压汽油机的功能合理性。同时,对涡轮增压汽油机气路系统的数学模型进行整理简化,将模型中容积效率、涡轮效率、涡轮质量流量等不易处理的非线性因素以工程中常用的MAP形式保留,建立机理/MAP混合描述的面向控制器设计的模型。面向实际工程应用,在气路系统的解耦控制方案下,针对涡轮增压汽油机气路系统中增压过程调节回路长、非线性强及惯性大等特点,提出了气路系统增压压力双闭环非线性控制方法。首先,以增压压力为跟踪控制目标,涡轮转速为控制输入,设计了神经网络前馈控制与PID反馈控制相结合的外环控制器;然后,以外环涡轮转速为跟踪控制目标,旁通阀开度为控制输入,设计了基于反步法的内环控制器,并通过逐级构造系统的Lyapunov函数证明了系统的渐进稳定性;最后,通过MATLAB/Simulink和AMESim的联合仿真,验证了所提出的双闭环控制方法的有效性和抗干扰性能。针对涡轮增压汽油机气路系统中进气歧管压力和增压压力的动力学耦合、机理建模难的问题,提出了涡轮增压汽油机气路系统非线性神经网络预测协调控制方法。首先,为了解决系统机理模型表达复杂的问题和抑制系统时变参数的影响,建立了基于神经网络在线学习的气路系统预测模型,通过仿真对比,完成了预测模型的动态特性和预测精度验证和分析;然后,基于神经网络预测模型,给出了控制需求的数学描述,将气路系统协调控制问题转化为带有约束的多输入多输出系统的优化控制问题,进而在预测控制的框架下,采用量子粒子群优化算法对优化问题在线求解,得到满足系统的控制输入;最后,通过MATLAB/Simulink和AMESim的联合仿真,验证了协调控制方法的优越性。(本文来源于《吉林大学》期刊2019-06-01)

钟福利[5](2019)在《基于分数阶微积分的锂电非线性系统建模和估计研究》一文中研究指出太阳能、风能等可再生清洁能源的规模化应用推动了能源转换与存储技术的发展。锂离子电池因其优良的性能成为电力储能、电驱动载具、便携式电子产品等应用的主流电能存储方案。随应用的推广,锂离子电池的安全性及可靠性问题日益凸。在此背景下,深入研究电池系统的建模和在线状态估计技术方法,对有效管理电池系统,保障电池安全、可靠、高效益运行具有重要意义。本文基于锂离子电池基础理论,结合分数阶微积分(FOC)理论、群体智能优化理论、滑模控制(SMC)技术和观测器设计理论,围绕锂离子电池系统的建模辨识和状态估计问题展开研究,主要研究工作如下:针对锂离子电池非线性系统的建模问题,在基础P2D电化学模型中考虑双电层电容及温度对模型参数的影响,构建了锂离子电池模拟系统,模拟电池充放电测试,并分析其电化学阻抗特性。基于此,采用描述复杂系统能力较强的FOC在时域建立了电池分数阶等效电路模型:考虑电池受不同条件因素的影响,提出了变参数分数阶RC等效电路模型(Wi-FORCECM),该模型对典型条件情形利用了对应的子模型建模描述,而子模型采用了不确定项综合刻画参数不确定、建模误差及扰动的影响,使模型与电池实际应用情形的变化有效契合;进一步考虑了电池不同尺度的行为特性,利用分数阶元件刻画系统内部件的非线性特性,提出了双分数阶环等效电路模型(DFOECM)。为了准确获取锂离子电池分数阶模型的参数,考虑分数阶非线性系统辨识的一般性,首先将非线性系统辨识问题转化为优化问题进行求解,形成了系统辨识基于优化技术求解的框架,提出了求解高维复杂优化问题的IGAL-ABC和MNIIABC智能优化算法,仿真结果表明了它们具备较好的探索和开采性能,以及跳出局部极值点搜索全局最优解的能力,鲁棒性较好。进而提出了分别基于IGALABC和MNIIABC的分数阶非线性系统辨识方法,通过辨识分数阶混沌系统验证了其有效性、准确性。最后将所提辨识方法扩展用于电池系统参数估计,获得了分别基于IGAL-ABC和MNIIABC的电池参数估计方法,并仿真检验了算法的性能,实验结果显示所提的方法能有效估计电池模型参数,准确性较好。为了实现锂离子电池系统的鲁棒状态估计,准确获取电池SOC信息,基于模型Wi-FORCECM和DFOECM设计了SOC在线估计方法。基于分数阶非线性系统状态估计的一般性,首先对一类不确定性分数阶非线性系统,利用SMC技术结合Luenberger-type控制项,研究了基于分数阶滑模观测器的状态估计方法,提高了该法对系统扰动、建模误差及参数不确定性的抑制能力,为电池状态估计研究提供了理论铺垫。考虑到锂离子电池参数受工作与环境条件的影响,基于Wi-FORCECM采用SMC技术和线性反馈补偿方法设计电池状态估计子,提出了切换滑模控制—龙伯格分数阶观测器(SW-SMCL-FrCO),实现SOC鲁棒估计,获得较好的估计准确性能。为降低观测器增益设定对先验知识的依赖,基于DFOECM研究了新的增益在线自适应调节的滑模观测器,并结合增益在线切变重初始化调整策略,构造了带增益切变重置的自适应滑模观测器(RSW-AdpSMOFOECM),有效控制观测器参考增益值对状态估计性能的影响。在SOC估计中,RSW-AdpSMO-FOECM避免了因增益设置不当对观测器收敛速度和准确性的影响,提高估计的准确性。利用Lyapunov稳定性理论分析了以上估计方法的收敛性,且通过仿真实验对比验证了它们的有效性、准确性和收敛性能。针对锂离子电池非线性系统的健康状态评估问题,基于分数阶等效电路模型和SMC理论设计了SOC和SOH联合估计算法。在算法的SOC估计部分,对由电池状态初始设定值与实际值的误差和其他因素引起的观测器不能快速准确跟踪真实值的情形,基于DFOECM提出了鲁棒性较好的两阶段切换分数阶滑模观测器(TPS-FrCSMO),在线准确估计SOC,有效处理了估计过程中与滑模增益相关的抖颤误差抑制和收敛速度二者不易兼得最优的问题;在SOH估计部分基于容量和电阻参数的变化行为设计参数与状态估计的自适应观测器,结合该自适应滑模观测器和TPS-FrCSMO有效实现电池的SOC与SOH联合估计。基于Lyapunov稳定性理论分析了SOC与SOH联合估计观测器的收敛性。此外对于电池剩余使用寿命(RUL)的估计,介绍了adpABC-PF方法,改善了算法的状态估计性能,从而结合容量衰减模型提出了基于adpABC-PF的电池RUL估计方法。通过仿真对比实验对所提的电池健康状态监测方法进行了验证分析,实验结果说明了它们具有较好的估计性能。(本文来源于《电子科技大学》期刊2019-03-13)

左曙光,黄荣奎,冯朝阳,吴承喜[6](2019)在《考虑非线性电磁分布力的虚拟电动振动系统建模》一文中研究指出针对振动台进行汽车零部件等振动试验存在试验周期长,成本高等问题,采用有限元方法构建了一套虚拟电动振动系统。建立了电磁系统以及动圈的有限元模型,实现了从动圈电流输入到振动台台面加速度输出的全过程虚拟仿真。对动圈所受的电磁驱动力进行理论分析与有限元仿真发现,它在空间上是非均匀分布的,而且力的大小和运动位置有关,呈现出明显的非线性规律。利用该虚拟振动系统进行实例仿真,仿真表明,在动圈的运动过程中,其所受电磁驱动力的非线性会引起台面加速度输出信号的谐波失真问题。相对于线性电磁模型,该虚拟振动系统提供了更真实的振动环境。(本文来源于《振动与冲击》期刊2019年02期)

张婧瑜,艾科勇[7](2018)在《基于数据驱动技术的非线性系统建模方法研究与应用》一文中研究指出针对实际工业系统多存在非线性耦合、时变、滞后等特性,难以建立精确机理模型,提出了一种基于数据驱动的方法建立系统的预测模型。采集过程运行中的历史数据分别建立非线性系统的RBF、LS-SVM和KPLS 3种预测模型,仿真实验表明所建数据驱动模型具有较好的预测精度,能够被用于控制、预报和评价生产过程和设备的运行状态。(本文来源于《兰州石化职业技术学院学报》期刊2018年03期)

张栋梁,杨庆东,刘伟业[8](2018)在《基于低速段非线性直驱伺服系统建模与分析》一文中研究指出针对直线电机直驱伺服系统在传统建模仿真过程中未完全考虑低速段存在的非线性因素,从而导致其模型缺乏模拟实际系统工作状态的能力这一问题,首先对低速段突出的定位力和摩擦力非线性因素进行了数学建模,并加入到传统永磁直线同步电机数学模型中进行整体非线性建模仿真分析。仿真实验结果表明:直线电机在低速段运行过程中,当加入非线性扰动因素时,能明显提高模拟直驱伺服系统实际工作状态的能力。(本文来源于《北京信息科技大学学报(自然科学版)》期刊2018年03期)

张观东[9](2018)在《基于核学习方法的非线性系统建模与辨识研究》一文中研究指出目前,神经网络、模糊系统等现有的计算智能方法在非线性系统建模与辨识中取得了成功的应用。与神经网络、模糊系统等智能计算的方法相比,基于“核技巧”(kernel tricks)的特征向量选择(Feature Vectors Selection,FVS)与核隐变量正交投影(Kernel-based Orthogonal Projections to Latent Structures,K-OPLS)的方法首先通过“核技巧”将输入数据映射至高维特征空间。在高维特征空间中FVS按照几何上的考虑提取相关的数据向量,形成特征空间的一个基底,所选择的数据向量定义为特征子空间,其次,将数据投影至该子空间上,基于MSVM(Multioutput Support Vector Machine,MSVM)方法建立辨识模型,MSVM方法保持了在~ε不敏感损失函数下具有紧凑与稀疏解的优点。在O-PLS模型框架下,K-OPLS方法在高维特征空间中能够去除输入中与输出不相关的成分,即剔除与响应变量(输出)正交的来自描述变量(输入)的变异成分,以实现对模型的预测成分及与响应-正交成分的计算。因此FVS及K-OPLS在具有更强的非线性逼近能力的同时能够有效的降低计算负荷,提高辨识效率。本文针对机器人系统及混沌动力学系统分别应用基于核学习的FVS及K-OPLS方法进行了建模与辨识,论文的主要研究内容包括如下几个方面:(1)研究了FVS-LR(Linear Regression,LR)及FVS-SVM方法的基本原理及实现过程,为验证FVS方法的有效性,首先将其应用于Mackey-Glass时间序列的预测实例中,实验结果表明,基于FVS方法的混沌时间序列预与SVM、KPCA-SVM及LS-SVM等现有的方法相比具有更高的预测精度及更高计算效率。进一步针对MIMO的Puma 560及SARCOS仿生机器人系统的建模与辨识提出了一种FVS与MSVM相结合的方法,实验结果表明,在同等条件下与传统智能计算的方法相比FVS-MSVM方法不仅能够减小计算复杂度,而且具有很好的建模与辨识精度,模型的推广性好。(2)针对Duffing-Ueda振子混沌动力学系统的辨识,提出了K-OPLS方法。同时为验证K-OPLS方法的有效性,首先将其应用于Mackey-Glass时间序列的辨识中。实验结果表明,基于K-OPLS方法的混沌时间序列预测精度及计算效率略优于FVS-LR方法。Duffing-Ueda振子混沌动力学系统的辨识实验中,对基于K-OPLS的辨识模型与原系统的动态性能进行了定性与定量的分析校验,定性校验准则是基于对比辨识模型与原系统吸引子(轨迹嵌入)、庞加莱映射、分岔图、极限环完成的,定量校验准则包括对比辨识模型与原系统的李雅普诺夫指数与关联维。实验结果表明,K-OPLS辨识方法具有很好的动态重构性能,定性展示出与原混沌系统相同的动态行为,并且具有与原混沌系统非常接近的动态不变性指标。能精确地再生出展示混沌动态行为的过程非线性模型,具有与原混沌系统非常接近的动态不变性指标。(3)在对来自测量蔡氏电路产生双涡卷吸引子与螺旋吸引子的低信噪比的信号实测数据实验中,对于低信噪比的实测数据首先进行小波降噪处理,进一步通过K-OPLS方法建立模型的重构吸引子,最后对辨识模型的重构吸引子与原系统的重构吸引子进行了对比分析。实验结果表明,辨识模型所重构出的吸引子与原系统的吸引子是基本一致的。(本文来源于《兰州交通大学》期刊2018-06-15)

梅蒙蒙[10](2018)在《基于非线性动力学的能源替代系统建模及实证分析》一文中研究指出随着经济全球化程度的日益加深,必然引发能源的大量消耗,进而导致二氧化碳排放量激增,对生态环境造成了极大的危害。从短期来看,由于关闭重污染企业可能会造成GDP的减少;但从长远来看,通过技术革新、完善设备,发展可再生能源产业将带来新的经济增长点。因此探究减排、经济增长和可再生能源发展之间相互影响、相互作用的耦合关系具有非常重要的意义。本文通过分析碳排放量、GDP和可再生能源装机容量之间相互影响的关系,建立了一个能源替代非线性微分方程模型,利用Routh-Hurwitz引理和Lyapunov稳定性理论探讨了该模型的动力学行为,分析了随着参数的变化系统由稳定状态、Hopf分岔点到混沌吸引子的演变过程。基于美国和中国实际的数据使用遗传算法辨识出了能源替代系统中的参数,给出了中国能源市场相应的调控措施和政策建议。最后对系统作了线性反馈控制,得出可以将混沌系统控制到稳定的正平衡点。(本文来源于《江苏大学》期刊2018-06-01)

非线性系统建模论文开题报告

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

模糊系统能有效地对具有不确定性的复杂非线性系统建模,可以充分利用领域专家通过语言描述的经验知识,使得模糊系统易于理解,因此模糊系统在实际系统建模和控制中有很多应用.理论上,模糊系统的精度与模糊规则数有关,模糊规则越多,所建模糊模型精度越高.然而,实际操作中,当对某些非线性系统进行模糊建模时,单纯地增加模糊规则数对于模糊模型精度的提高非常有限,有时反而极大地增加了整个建模过程的计算量,导致模糊规则的冗余和模型的过拟合问题,故复杂度和精度的折中成为了模糊系统辨识研究中的热点问题.因此,如何设计简洁有效的模糊系统,提高其逼近精度,并降低计算复杂度就成为本文研究的主要出发点.本文的主要工作包括以下几个方面:(1)将一维空间的模糊集推广到二维空间,提出了锥模糊集的概念,应用锥模糊集去构造模糊系统,得到了基于模糊网格划分的Mamdani型和T-S型锥模糊系统,并详细讨论了锥模糊系统的推导过程及设计步骤.传统模糊系统模糊规则前件的计算需要通过t-范数来实现,在锥模糊系统推导过程中无需t-范数计算,从而简化了模糊系统的结构和运算.证明了锥模糊系统的泛逼近性和逼近精度,其中四棱锥模糊系统和叁棱锥模糊系统分别具有一阶和二阶逼近精度.仿真实验表明,锥模糊系统能够用较少的规则数达到较高的精度.(2)为解决模糊控制中被控对象难于建模的问题,提出了基于Mamdani和T-S型四棱锥和叁棱锥模糊系统的建模方法.传统的模糊推理建模法得到的HX方程是分片常系数非线性模型,而基于Mamdani和T-S型叁棱锥模糊系统的建模方法可得到分片常系数线性微分方程.利用基于Mamdani和T-S型四棱锥和叁棱锥模糊系统的建模方法,分别对二阶时不变自由运动系统进行建模,得到了系统的输入输出模型和状态空间模型.通过仿真实验比较,说明了基于锥模糊系统建立的系统模型具有较高的精度.(3)针对模糊系统中模糊规则数和模糊模型结构难以确定的问题,提出一种优化初始聚类中心的K-means算法,从而能够合理地自动获取初始聚类中心并确定聚类数(规则数).将改进的K-means算法用于锥模糊系统辨识过程中的输入空间划分,以聚类中心作为锥隶属度函数的峰值点,克服了聚类算法用于模糊系统建模时需预先确定聚类数的缺陷.仿真实验对Mackey-Glass混沌时间序列、Box-Jenkins煤气炉数据和汽车MPG数据这叁个系统辨识的基准问题进行研究,结果表明基于改进的K-means算法的锥模糊系统辨识方法简单快速且逼近精度较高.(4)针对模糊系统的规则数随着维数增加而呈指数增长的问题,提出了规则数随着维数增加而线性增长的递阶锥模糊系统.给出了递阶锥模糊系统的两种基本类型的具体推导过程及其辨识方法:通过改进的K-means聚类算法确定系统结构,采用遗传算法优化规则参数.在Mackey-Glass混沌时间序列、Box-Jenkins煤气炉数据和非线性系统的辨识仿真中,验证了递阶锥模糊系统在准确性、计算效率和对噪声的鲁棒性方面的优势。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

非线性系统建模论文参考文献

[1].熊中刚,刘忠,罗素莲.基于模糊加权最小二乘支持向量回归的非线性系统建模方法[J].探测与控制学报.2019

[2].姜明佐.锥模糊系统及其在非线性系统建模中的应用[D].大连理工大学.2019

[3].韩振宇.轻度混合动力汽车启停系统建模与非线性控制方法研究[D].吉林大学.2019

[4].陈欢.涡轮增压汽油机气路系统建模与非线性控制方法研究[D].吉林大学.2019

[5].钟福利.基于分数阶微积分的锂电非线性系统建模和估计研究[D].电子科技大学.2019

[6].左曙光,黄荣奎,冯朝阳,吴承喜.考虑非线性电磁分布力的虚拟电动振动系统建模[J].振动与冲击.2019

[7].张婧瑜,艾科勇.基于数据驱动技术的非线性系统建模方法研究与应用[J].兰州石化职业技术学院学报.2018

[8].张栋梁,杨庆东,刘伟业.基于低速段非线性直驱伺服系统建模与分析[J].北京信息科技大学学报(自然科学版).2018

[9].张观东.基于核学习方法的非线性系统建模与辨识研究[D].兰州交通大学.2018

[10].梅蒙蒙.基于非线性动力学的能源替代系统建模及实证分析[D].江苏大学.2018

论文知识图

软测量模二自由度悬挂系统模型改进型GSSA模型(直线)与Simulink模...系统的结构框图有扰动的非线性系统建模基于神经网络的非线性系统建模

标签:;  ;  ;  ;  ;  ;  ;  

非线性系统建模论文_熊中刚,刘忠,罗素莲
下载Doc文档

猜你喜欢