非线性Poisson-Boltzmann方程的改进无单元Galerkin法分析

非线性Poisson-Boltzmann方程的改进无单元Galerkin法分析

论文摘要

【目的】利用改进无单元Galerkin法求解非线性Poisson-Boltzmann方程。【方法】将改进的移动最小二乘近似与非线性Poisson-Boltzmann方程的Galerkin弱形式耦合,建立了非线性Poisson-Boltzmann方程的改进无单元Galerkin法。基于改进移动最小二乘近似的误差结果下,推导了非线性Poisson-Boltzmann方程的改进无单元Galerkin法的误差估计。【结果】在Sobolev空间中获得了误差估计,并通过数值算例验证了理论结果。【结论】该方法具有较高的计算精度和较好的稳定性,误差随节点间距的减小而降低。

论文目录

  • 1 非线性Poisson-Boltzmann方程边值问题的改进无单元Galerkin法
  •   1.1 变分公式
  •   1.2 数值离散
  • 2 误差估计
  • 3 数值算例
  • 4 结论
  • 文章来源

    类型: 期刊论文

    作者: 钟思瑶,李小林

    关键词: 无网格方法,改进无单元法,非线性方程,误差估计

    来源: 重庆师范大学学报(自然科学版) 2019年04期

    年度: 2019

    分类: 基础科学

    专业: 数学

    单位: 重庆师范大学数学科学学院

    基金: 国家自然科学基金面上项目(No.11471063),重庆市教育委员会科学技术研究重大项目(No.KJZDM201800501),重庆市自然科学基金(No.cstc2018jcyjAX0266,No.cstc2017jcyjAX0176)

    分类号: O241.82

    页码: 68-74

    总页数: 7

    文件大小: 2019K

    下载量: 42

    相关论文文献

    • [1].Poisson double extensions[J]. Science China(Mathematics) 2020(04)
    • [2].Zero extension for Poisson's equation[J]. Science China(Mathematics) 2020(04)
    • [3].Higher order Poisson kernels and L~p polyharmonic boundary value problems in Lipschitz domains[J]. Science China(Mathematics) 2020(06)
    • [4].多项式Poisson代数上的有限维单Poisson模[J]. 浙江师范大学学报(自然科学版) 2019(04)
    • [5].空气污染对心脑血管疾病门诊量影响的Poisson广义可加模型分析[J]. 中国卫生统计 2017(02)
    • [6].关于Poisson的《力学教程》——分析力学札记之二十七[J]. 力学与实践 2016(02)
    • [7].复合Poisson下m重风险模型[J]. 数学学习与研究 2017(15)
    • [8].零浮动Poisson项目计数法在敏感数据抽样调查中的应用[J]. 统计与决策 2020(01)
    • [9].Poisson方程在边界附近的零延拓[J]. 中国科学:数学 2020(04)
    • [10].Multidimensional compound Poisson distributions in free probability[J]. Science China(Mathematics) 2019(05)
    • [11].二重Poisson Hopf扩张[J]. 浙江师范大学学报(自然科学版) 2019(01)
    • [12].张量代数上一种带辫子的Poisson结构[J]. 高校应用数学学报A辑 2017(04)
    • [13].零膨胀Poisson分布模型回归分析[J]. 四川精神卫生 2018(05)
    • [14].利用Poisson方法实现图像前景提取[J]. 电脑编程技巧与维护 2017(05)
    • [15].复合Poisson单的可加性及应用[J]. 数学的实践与认识 2015(04)
    • [16].孕期用药对出生缺陷影响的Poisson回归模型分析[J]. 中国妇幼保健 2015(33)
    • [17].Poisson过程到达时间和到达时间间隔序列探究[J]. 知识文库 2020(01)
    • [18].Crustal Poisson's ratio anomalies in the eastern part of North China and their origins[J]. Geoscience Frontiers 2011(03)
    • [19].关于复合Poisson-Geometric分布的几个性质[J]. 辽宁师范大学学报(自然科学版) 2011(04)
    • [20].复合Poisson-Geometric过程的性质及简单应用[J]. 湖南工业大学学报 2010(01)
    • [21].随机利率下带干扰的双险种Poisson-Geometric过程的破产概率[J]. 甘肃科学学报 2010(02)
    • [22].Decomposition of almost-Poisson structure of generalised Chaplygin's nonholonomic systems[J]. Chinese Physics B 2010(03)
    • [23].Effect of Poisson’s ratio on stress state in the Wenchuan M_S8.0 earthquake fault[J]. Earthquake Science 2009(06)
    • [24].Poisson过程、复合Poisson过程的叠加及其应用[J]. 石家庄学院学报 2008(03)
    • [25].Poisson几何与数学物理研讨会[J]. 国际学术动态 2017(02)
    • [26].Co-Poisson structures on polynomial Hopf algebras[J]. Science China(Mathematics) 2018(05)
    • [27].一般计数资料Poisson分布模型回归分析[J]. 四川精神卫生 2018(05)
    • [28].改进后的复合Poisson-Geometric风险模型的生存概率[J]. 重庆师范大学学报(自然科学版) 2016(04)
    • [29].改进后的复合Poisson-Geometric风险模型的预警区问题[J]. 重庆师范大学学报(自然科学版) 2016(05)
    • [30].Theoretical and Experimental Analyses of Poisson Ratios for Plain-Woven Fabrics[J]. Journal of Donghua University(English Edition) 2015(03)

    标签:;  ;  ;  ;  

    非线性Poisson-Boltzmann方程的改进无单元Galerkin法分析
    下载Doc文档

    猜你喜欢