Lasso-二元选择分位数回归模型在财务报告舞弊识别中的应用

Lasso-二元选择分位数回归模型在财务报告舞弊识别中的应用

论文摘要

一些上市公司财务报告舞弊现象层出不穷,严重侵害了投资者的利益。如何高效识别财务报告中的舞弊行为已成为目前研究的热点。文章在对已有的财务报告舞弊识别模型分析的基础上,提出了一种基于lasso-二元选择分位数回归的识别模型,并通过选取2010-2017年间240家上市公司年报数据作为样本,设计了16个财务指标进行了实证研究。结果证明,与传统的Logistic回归模型相比,lasso-二元选择分位数回归识别模型不但具备良好的变量选择能力,而且可以获得更好的识别效果,并能反映在不同的舞弊风险条件下各指标对于舞弊风险的影响,具有较高的应用价值。

论文目录

  • 一、引 言
  • 二、模型与方法
  •   1.Lasso[10]方法
  •   2.二元选择分位数回归模型
  •   3.Lasso -二元选择分位数回归模型
  • 三、 公司财务报告舞弊识别的实证研究
  •   1.样本数据来源
  •   2.变量的筛选
  •   3.模型实现
  • 四、实证结果分析
  •   (一)变量筛选和系数估计方面
  •     1.变量筛选结果分析
  •     2.系数估计结果分析
  •   (二)模型识别方面
  • 五、结 论
  • 文章来源

    类型: 期刊论文

    作者: 王威,杨朋之

    关键词: 财务报告,舞弊识别,二元选择分位数回归

    来源: 上海市经济管理干部学院学报 2019年04期

    年度: 2019

    分类: 经济与管理科学,基础科学

    专业: 数学,宏观经济管理与可持续发展,企业经济,金融,证券,投资

    单位: 桂林旅游学院国际商学院,广西立信会计师事务所

    分类号: F275;F224;F832.51

    DOI: 10.19702/j.cnki.jsemc.2019.04.006

    页码: 40-49

    总页数: 10

    文件大小: 158K

    下载量: 179

    相关论文文献

    • [1].基于分位数回归的针阔混交林树高与胸径的关系[J]. 浙江农林大学学报 2020(03)
    • [2].基于分位数回归的人力资本结构对产业结构优化升级的影响研究——以山西省为例[J]. 商业经济 2020(06)
    • [3].基于弹性网分位数回归的开放型基金绩效研究[J]. 数理统计与管理 2020(04)
    • [4].教育增值评价中嵌套数据增长百分位估计方法探析:多水平线性分位数回归模型的应用[J]. 中国考试 2020(09)
    • [5].分位数回归下的指标设计与实现[J]. 当代经济 2019(02)
    • [6].基于分位数回归模型的地震巨灾风险评估[J]. 数理统计与管理 2019(05)
    • [7].基于分位数回归的大豆期货市场的风险分析[J]. 中国商论 2017(33)
    • [8].房地产增长收敛的分位数回归分析[J]. 阴山学刊(自然科学版) 2016(04)
    • [9].年龄对医疗费用增长的影响:基于分位数回归模型的分析[J]. 中国卫生经济 2016(06)
    • [10].基于多元分位数回归的汇率时序相依性分析[J]. 统计与决策 2015(15)
    • [11].影响波士顿不同社区房价水平的因素分析——基于分位数回归方法[J]. 商 2015(30)
    • [12].分位数回归对资产定价模型的比较分析[J]. 商业故事 2016(34)
    • [13].金融素养与金融满意度[J]. 金融科学 2017(01)
    • [14].国产电影票房绩效的影响因素研究——基于分位数回归及门限效应的分析[J]. 文化产业研究 2017(02)
    • [15].对外贸易、经济增长与二氧化碳排放——基于分位数回归的实证研究[J]. 经济数学 2019(04)
    • [16].基于神经网络分位数回归的金融风险预警[J]. 统计与决策 2020(14)
    • [17].分位数回归模型在高维金融数据分析中的方法和应用[J]. 知识经济 2019(07)
    • [18].新疆各地州市承接产业转移的能力、规模及其匹配性研究——基于分位数回归模型的研究[J]. 市场论坛 2019(07)
    • [19].面板数据复合分位数回归模型的估计[J]. 统计与决策 2018(05)
    • [20].高等教育发展对收入不平等的影响——基于分位数回归模型的研究[J]. 北京交通大学学报(社会科学版) 2016(01)
    • [21].员工培训对什么样的企业最有益?—基于无条件分位数回归的分析[J]. 管理现代化 2016(01)
    • [22].一元线性模型的分位数回归解的求法[J]. 白城师范学院学报 2016(05)
    • [23].基于贝叶斯复合分位数回归的参数估计及应用[J]. 工业仪表与自动化装置 2016(05)
    • [24].基于分位数回归模型的卫生总费用影响因素研究[J]. 现代生物医学进展 2015(30)
    • [25].公共部门与非公共部门工资差异的分位数回归分析[J]. 统计研究 2012(01)
    • [26].无条件分位数回归:文献综述与应用实例[J]. 统计研究 2012(03)
    • [27].城乡收入差距、房地产投资对城镇化发展的影响研究——基于面板数据分位数回归的实证分析[J]. 中国物价 2020(11)
    • [28].基于分位数回归的娘子关泉降水及径流变化分析[J]. 天津师范大学学报(自然科学版) 2018(06)
    • [29].信息化对旅游产业增长的贡献——基于面板数据分位数回归的分析[J]. 旅游学刊 2016(04)
    • [30].面板数据分位数回归模型求解的模式搜索法[J]. 数理统计与管理 2016(03)

    标签:;  ;  ;  

    Lasso-二元选择分位数回归模型在财务报告舞弊识别中的应用
    下载Doc文档

    猜你喜欢