支持向量机回归在臭氧预报中的应用

支持向量机回归在臭氧预报中的应用

论文摘要

采用南京工业区2016年5月20日~8月15日这一高臭氧(O3)期的O3、O3前体物和常规气象资料数据,利用支持向量机回归(SVMr)方法分别预报O3的小时值、日最大值和最大8 h滑动平均值.结果表明,O3小时值预报的相关系数(R2)为0. 84,平均绝对误差(MAE)和平均绝对百分误差(MAPE)分别为3. 44×10-9和24. 48,O3前期浓度、紫外B波段辐射(UVB)和NO2浓度是关键因子. O3日最大值预报的主要因子是NOx在07:00的浓度和UVB.预报O38 h时UVB和气温起重要作用.加入前体物项能够使O3的预报精度提升10%~28%.与多元线性回归方法相比,SVMr对O3浓度的预报有明显优势.

论文目录

  • 1 材料与方法
  •   1.1 观测站点
  •   1.2 仪器及监测方法
  •   1.3 支持向量机回归 (SVMr) 模型
  •   1.4 实验数据
  •   1.5 评价标准
  • 2 结果与讨论
  •   2.1 O3小时值预报
  •   2.2 O3日最大值预报
  •   2.3 O3最大8 h滑动平均预报
  • 3 结论
  • 文章来源

    类型: 期刊论文

    作者: 苏筱倩,安俊琳,张玉欣,梁静舒,刘静达,王鑫

    关键词: 支持向量机回归,臭氧预报,臭氧小时值,臭氧日最大值,臭氧日最大滑动平均

    来源: 环境科学 2019年04期

    年度: 2019

    分类: 工程科技Ⅰ辑

    专业: 环境科学与资源利用

    单位: 南京信息工程大学气象灾害教育部重点实验室气候与环境变化国际合作联合实验室气象灾害预报预警与评估协同创新中心,青海省人工影响天气办公室,中国气象局气象探测中心

    基金: 国家自然科学基金项目(91544229),国家重点研发计划项目(2016YFC0202400),江苏省高校“青蓝工程”项目

    分类号: X515

    DOI: 10.13227/j.hjkx.201809134

    页码: 1697-1704

    总页数: 8

    文件大小: 374K

    下载量: 478

    相关论文文献

    • [1].基于人工鱼群算法的孪生支持向量机[J]. 智能系统学报 2019(06)
    • [2].基于改进支持向量机的温室大棚温度预测[J]. 科技创新与应用 2020(10)
    • [3].结构化支持向量机研究综述[J]. 计算机工程与应用 2020(17)
    • [4].支持向量机理论及应用[J]. 科学技术创新 2019(02)
    • [5].加权间隔结构化支持向量机目标跟踪算法[J]. 中国图象图形学报 2017(09)
    • [6].多分类孪生支持向量机研究进展[J]. 软件学报 2018(01)
    • [7].模糊型支持向量机及其在入侵检测中的应用[J]. 科技创新与应用 2018(11)
    • [8].从支持向量机到非平行支持向量机[J]. 运筹学学报 2018(02)
    • [9].支持向量机的基本理论和研究进展[J]. 长江大学学报(自科版) 2018(17)
    • [10].孪生支持向量机综述[J]. 计算机科学 2018(11)
    • [11].一种新的基于类内不平衡数据学习支持向量机算法[J]. 科技通报 2017(09)
    • [12].分段熵光滑支持向量机性能研究[J]. 计算机工程与设计 2015(08)
    • [13].有向无环图-双支持向量机的多类分类方法[J]. 计算机应用与软件 2015(11)
    • [14].基于支持向量机的股票价格预测模型研究与应用[J]. 课程教育研究 2016(28)
    • [15].灰狼优化的混合参数多分类孪生支持向量机[J]. 计算机科学与探索 2020(04)
    • [16].基于属性约简—光滑支持向量机的中小企业信息化评价研究[J]. 软件工程 2020(07)
    • [17].基于稀疏孪生支持向量机的人脸识别[J]. 信息技术 2020(07)
    • [18].基于总类内分布的松弛约束双支持向量机[J]. 济南大学学报(自然科学版) 2018(04)
    • [19].基于多分类支持向量机的评估模型研究[J]. 数学的实践与认识 2017(01)
    • [20].改进的支持向量机在微博热点话题预测中的应用[J]. 现代情报 2017(03)
    • [21].多核在线支持向量机算法研究及应用[J]. 宜宾学院学报 2017(06)
    • [22].基于改进遗传算法的支持向量机参数优化方法[J]. 计算机与现代化 2015(03)
    • [23].一种层次粒度支持向量机算法[J]. 小型微型计算机系统 2015(08)
    • [24].自训练半监督加权球结构支持向量机多分类方法[J]. 重庆邮电大学学报(自然科学版) 2014(03)
    • [25].四类基于支持向量机的多类分类器的性能比较[J]. 聊城大学学报(自然科学版) 2014(03)
    • [26].一种模糊加权的孪生支持向量机算法[J]. 计算机工程与应用 2013(04)
    • [27].一种采用粗糙集和遗传算法的支持向量机[J]. 山西师范大学学报(自然科学版) 2013(01)
    • [28].基于在线支持向量机的无人机航路规划技术[J]. 电光与控制 2013(05)
    • [29].贪婪支持向量机的分析及应用[J]. 计算机工程与应用 2012(24)
    • [30].一种改进的双支持向量机[J]. 辽宁石油化工大学学报 2012(04)

    标签:;  ;  ;  ;  ;  

    支持向量机回归在臭氧预报中的应用
    下载Doc文档

    猜你喜欢