导读:本文包含了电催化剂论文开题报告文献综述、选题提纲参考文献及外文文献翻译,主要关键词:催化剂,法拉第,金属,稳定性,固氮,尖晶石,发蓝。
电催化剂论文文献综述
张楚风,陈哲伟,连跃彬,陈宇杰,李沁[1](2019)在《泡沫铜基底原位生长的铜基导电金属有机框架作为双功能电催化剂》一文中研究指出以泡沫铜为基底生长氢氧化铜纳米线,通过原位转化合成二维导电金属有机框架(MOF)材料Cu_3HITP_2(HITP=2,3,6,7,10,11-六氨基叁亚苯)作为双功能催化剂,可直接用作析氧及氧还原反应的工作电极,而无需使用额外的基底或粘合剂,且无需后续热处理。研究发现以氢氧化铜纳米线为模板的Cu_3HITP_2表现出了更大的电化学比表面积,这种新型的电极可在碱性溶液(0.1和1.0 mol·L~(-1) KOH)中可以稳定运行,析氧反应中在电流密度达到10 mA·cm~(-2)时的过电位仅为1.53 V,超越了商业二氧化钌的催化性能。此外,该催化剂在氧还原反应中的半波电位达到0.75 V,优于大多数MOF材料。(本文来源于《物理化学学报》期刊2019年12期)
庞宏建,刘伟[2](2019)在《合成氨电催化剂研究进展》一文中研究指出氨是一种重要的无机化工原料,氮气是自然界最为丰富的自然资源之一,用氮气通过化学反应合成氨,近百年来一直是化工行业的重要生产技术之一。与传统合成氨技术相比,电催化合成氨技术能够有效减少能耗、减少CO_2排放量,因而成为最有前景的化工合成技术之一。以氮气为原料,利用电催化技术合成氨既达到固氮又能实现生产国计民生必需化工原料目标,但受制于合成反应的动力不足之瓶颈。因此,寻找原料丰富、行之有效、价格低廉、制备技术可行的合成氨电催化剂,成为该研究热点。本文在介绍合成氨电催化技术基本原理的基础上,重点综述了近几年国内外在电催化合成氨催化剂领域的最新研究现状,并对其未来发展趋势进行了分析与展望。(本文来源于《江西化工》期刊2019年06期)
杨慧敏,陈耀,覃勇[3](2020)在《原子层沉积方法在设计制备高效电催化剂中的应用(英文)》一文中研究指出人类对不可再生化石能源的依赖导致了全球范围内的能源危机和环境污染.电化学能源转换技术由于具有清洁、高效、原料来源广泛及可再生等优点而受到广泛关注.电催化剂能加快反应动力学,提高目标产物选择性,在电化学能源转换技术中起着至关重要的作用.目前, Pt是多数重要的电化学反应(如电解水、氧还原以及一些小分子醇类和酸类的氧化反应)中使用最多和最有效的催化剂之一.然而Pt催化剂面临着价格昂贵、易中毒、易流失等问题,使其在大规模工业化应用中受到限制.为了提高Pt催化剂的利用率和稳定性,研究人员进行了大量工作.例如,制备尺寸小的Pt纳米颗粒,增加单位质量Pt表面积和Pt利用率;在Pt催化剂中加入Ru或Pd等其它金属,促进醇类和酸类氧化反应中间产物的氧化,减缓Pt中毒;选用抗腐蚀性能好的载体,增加Pt与载体间相互作用,从而抑制Pt颗粒在高电位、高湿度、高酸碱度电化学工作环境中的脱落和聚集.尽管如此,利用传统的方法仍然很难精确调控电催化剂的组成、尺寸和纳米结构,无法最大程度提高贵金属Pt的利用效率.原子层沉积(ALD)技术可在原子尺度控制物质生长,既能在多孔、复杂基体上沉积尺度均一的纳米薄膜或颗粒,也能精确调控、构筑各类纳米结构.本文总结了近年来利用ALD技术制备高性能电催化剂的代表性研究进展.文章首先介绍了ALD反应机理、载体表面官能团对ALD生长的促进作用以及ALD制备方法对催化剂金属-载体相互作用的影响等基本原理和知识.总结了利用ALD技术制备高活性Pt催化剂的各种方法,包括制备超细纳米颗粒,纳米线、纳米薄膜、纳米管,纳米3D结构等不同形貌Pt催化剂等.介绍并探讨了利用ALD构筑纳米陷阱、包覆超薄多孔碳膜/氧化物膜、选择性修饰载体等提高Pt催化剂稳定性的策略.文章还介绍了如何通过调节ALD反应温度、前驱体种类,以及利用选择性沉积等方法,精确调控双贵金属电催化剂中金属的比例、尺寸、结构等以提高催化剂性能,并重点阐述了双金属核壳催化剂的制备方法.此外,文章还概述了ALD方法制备非贵金属催化剂的研究进展.最后,文章总结了ALD技术在设计、制备电催化剂领域的优势和不足,展望了ALD在该领域的发展和应用前景,为设计、制备高性能电催化剂提供了参考.(本文来源于《Chinese Journal of Catalysis》期刊2020年02期)
赵挥,翁晨晨,任金涛,葛丽,刘玉萍[4](2020)在《有机膦酸盐衍生的氮掺杂的磷酸钴/碳纳米管杂化材料作为高效氧还原电催化剂(英文)》一文中研究指出随着环境污染和能源危机的日益严重,探索高效的非贵金属氧还原电催化剂来替代商业Pt/C迫在眉睫.其中,报道比较多的是具有钴基活性物种和氮掺杂碳的复合材料例如Co-N_x-C, Co_3O_4/GO, Co-N/CNT等,该复合材料具有高导电性、良好的稳定性和优异的催化活性.与其他钴基催化剂相比,磷酸钴由于其成本低廉,对环境友好,多功能的优良特性,已被广泛应用于催化、吸附、分离及储能等领域,在电催化方面也有极大的应用潜力.研究表明,磷酸基团不仅可以充当质子受体,也会诱导局部钴原子的几何结构发生扭曲,从而有利于水分子的吸附并促进析氧反应的发生.此外,磷酸钴也被证实具有一定的氧还原活性.尽管磷酸钴电催化剂的研究已经取得了一定进展,磷酸根有利于质子传输,但是其导电性很差,不利于电荷的转移和传输,使得其电催化活性不高.将磷酸钴和导电碳材料复合是解决问题的有效方法.而且,磷酸钴在碱性溶液中并不稳定,极大限制了其在电催化氧还原中的应用.金属有机膦酸盐是一类包含金属离子和有机膦酸配体的杂化材料,通过简单的焙烧便可以很容易地得到金属无机磷酸盐,并且在焙烧过程中氮掺杂的碳也会原位产生,并包覆在磷酸钴的表面,使得其导电性和催化活性大大提高.为此,本研究组制备了有机膦酸钴衍生的磷酸钴和氮磷掺杂的石墨烯的复合材料并用于电催化氧还原和析氧反应,所得到的材料导电性和稳定性良好,然而,该催化剂的表观活性与商业Pt/C相比仍有较大差距,且使用有机膦酸钴作为前驱体对活性的影响也不甚清楚.因此,本文采用含氮的有机膦酸配体乙二胺四亚甲基膦酸钠(EDTMPS)为磷源制备了氮掺杂的磷酸钴/碳纳米管杂化材料(CoPiC-N/CNT-3),其催化活性和稳定性良好,并进一步探讨了各种不同因素对电催化活性的影响.XRD和TEM结果表明,用这种方法得到的磷酸钴(CoPiC)为Co_2P_2O_7物相,与磷酸二氢钠为磷源制备得到的CoPi相比,CoPiC的表面有石墨化碳层的存在, EDS图谱表明, Co, P, C, N均匀地掺杂到复合材料的骨架结构中.Raman光谱结果表明,石墨化碳层的存在和适量的碳纳米管的引入均可以增强复合材料的石墨化程度并提高了导电性,而氮掺杂导致其缺陷位点增多.XPS结果进一步表明,有机膦酸钴可以作为前驱体可制得氮掺杂的磷酸钴/碳纳米管杂化材料.电催化反应测试表明, CoPi C-N/CNT-3的氧还原活性与商业Pt/C相当,其遵循的是4电子的反应路径,而且抗甲醇氧化能力和稳定性均优于Pt/C.原因主要归结于以下几点:(1)磷酸钴颗粒与氧化碳纳米管的协同作用可以显着增强氧还原催化活性,引入的碳纳米管可以克服磷酸钴导电性差的缺陷;(2)磷酸钴在复合材料中分散均匀,使得可以充分利用催化剂的活性位点;(3)氮掺杂可以调变材料的电子结构,从而改善催化活性;(4)石墨化碳层的存在可以改善材料的电子导电性和稳定性,有利于电子转移并可以保护磷酸钴颗粒在催化氧还原反应过程中不被电解液腐蚀.可见,所制有机膦酸衍生的氮掺杂的磷酸钴/碳纳米管杂化材料有望替代Pt/C催化剂,并推动清洁可再生能源领域的相关研究.(本文来源于《Chinese Journal of Catalysis》期刊2020年02期)
刘广权,彭丽萍,曹林洪,吴卫东[5](2019)在《用于氧还原反应的高耐久活性叁元Pt-Ti-Mg薄膜电催化剂》一文中研究指出有效的提高利用效率,降低浪费是能源利用面临的重要问题。质子交换膜燃料电池(PEMFC)能将燃料中的化学能直接转化成电能,其转化效率高达70%,且过程中不会产生氮、硫等的有毒气体。是目前提高能源利用效率的有效途径。催化电极是决定PEMFC转化效率关键因素,目前,工业生产中大多数采用Pt/C作为催化电极材料。研究者们已经解决了Pt/C催化电极的CO中毒等诸多问题[1],并通过过渡金属的加入,大幅提高Pt/C电极的催化活性[2]。近年来,研究人员通过掺杂与去合金方法获得多孔状的Pt/C电极,大大增加反应过程中的接触面积,有效的提高了电极催化效率。但催化电极循环稳定性的进一步提高仍然是亟待解决的关键问题。金属Ti具有良好的抗腐蚀性能,相关报道表明,Ti的掺杂不仅能够提高电极催化效[3],还能有效的提高催化电极的循环稳定性。理论上预测,多孔状的Pt-Ti/C结构合金将成为更有潜力的催化电极材料。本研究首先利用自组装的方法在碳纸上平铺一层PS微球作为基底,再采用超高真空磁控溅射共溅技术,一步合成Pt-Ti-Mg叁元合金,再用HCL和甲苯处理,获得多孔状的Pt-Ti/C结构合金电极。扫描电镜测试结果显示,利用这种方法获得了互交联的叁维网状结构Pt-Ti/C电极,这种结构极大限度的增加其反应接触面积,预计在其氧还原性能的测试中,能够表现出良好的质量比活性和面积比活性,且催化电极循环稳定性也能得到提高。(本文来源于《TFC'19第十五届全国薄膜技术学术研讨会摘要集》期刊2019-11-15)
[6](2019)在《我国科学家研制出新型高效室温固氮电催化剂》一文中研究指出日前,宁夏大学罗民教授课题组首次通过两步法(碳化和氧化热处理工艺)调控制备基于金属有机框架的纳米复合电催化剂材料,获得了具有新颖核壳结构的用于常温电化学固氮(NRR)的高效电催化剂。相关论文在线发表于《美国化学会—应用材料与界面》。在能源危机和环境问题日益凸显的全球背景下,绿色环保、低能耗的合成氨方法具有重要意义。近年来,电化学固(本文来源于《中国粉体工业》期刊2019年05期)
吴睿,刘雄雄,陈俊松[7](2019)在《高性能多孔Fe/N共掺杂碳纳米管电催化剂研究(英文)》一文中研究指出开发高性能、低成本的氧还原催化剂是降低燃料电池成本的关键之一。过渡金属-氮-碳材料具有催化活性高、成本低、环境友好等优点,被认为具有广阔的应用前景。该文提出了一种简单的聚多巴胺改性碳纳米管的方法,在碳纳米管(CNTs)表面包覆聚多巴胺(PDA),通过高温裂解CNTs@PDA和FeCl3复合物制备多孔CNTs@Fe/N/C电催化剂。用TEM、BET、Raman和XPS对制备的催化剂的形貌和组成进行了表征。电化学结果表明,CNTs@40%Fe/N/C催化剂的半波电位高达0.881 V,接近于商业化Pt/C催化剂。此外,CNTs@40%Fe/N/C催化剂亦具备优异的抗甲醇干扰性及稳定性,是一种有良好实际应用前景的燃料电池非贵金属氧还原电催化剂。(本文来源于《电子科技大学学报》期刊2019年05期)
孙旭平[8](2019)在《泡沫镍担载NiCoP纳米片用作高效双功能水分解电催化剂(英文)》一文中研究指出随着能源危机和全球变暖,寻找新能源替代化石燃料成为热门话题.H_2被认为是环保的能源载体,因为H_2单位质量的能量密度高,当H_2在发动机和燃料电池中被消耗时,它只产生水.传统的H_2合成方法主要依靠化石燃料的蒸汽重整,此过程会导致大量CO_2排放.目前,一种大规模生产H_2的环保替代方法是电化学水分解.电化学水分解反应由阴极析氢反应(HER)和阳极析氧反应(OER)两个半反应组成,这两种反应都需要催化剂来提高效率和降低过电位.尽管Pt/C和IrO_2/RuO_2催化剂对HER和OER表现出了高性能,但它们的稀缺性和高成本阻碍了它们的广泛应用.所以,使用对HER和OER同时有效果的双功能电催化剂能够简化系统和降低成本.因此,设计和开发地球上丰富的双功能电催化剂具有重要的现实意义.过渡金属磷化物是金属与磷合金化后形成的一类重要化合物,其良好的导电性对提高电化学性能具有重要意义.最近,黑龙江大学付宏刚团队制备出了生长在氮掺杂碳包覆Ni泡沫上的NiCoP纳米片(NiCoP/NF@NC).线性扫描伏安(LSV)曲线显示,在1.0 MKOH电解液达到10 mA/cm~2的电流密度值时, NiCoP/NF@NC电极的析氢过电位为31.8 mV,析氧过电位为308.2 mV,其过电位远低于NiP/NF@NC (126.6 mV)和CoP/NF@NC (112.1 mV),说明由于双金属的协同效应, NiCo P/NF@NC的性能优于CoP/NF@NC和NiP/NF@NC.此外,在OER过程, NiCoP/NF@NC电极的析氧过电位也低于NiP/NF@NC (349.1 mV)和CoP/NF@NC (383.3 mV)电极.值得注意的是, NiCoP/NF@NC电极具有良好的稳定性,经过10000个循环后,性能没有明显的衰减.在电化学水分解反应中,该催化剂电极具有以下优点:(1)可作为HER和OER双功能电催化剂;(2)泡沫镍加速离子扩散,提高电催化性能;(3)氮掺杂碳纳米结构的引入提高了电导率,促进了电子的传递.综上所述,泡沫镍担载的叁维纳米结构NiCoP纳米片被证明是一种高效、耐用的电化学水分解催化剂.整个制造过程成本效益高,易于规模化,这些显着的特点使其有望作为一种先进的催化剂电极在水分解技术中得到实际应用.(本文来源于《Chinese Journal of Catalysis》期刊2019年10期)
高丽,曹珊珊,谢俊峰[9](2019)在《四氧化叁钴@发蓝铁丝自支撑电催化剂用于析氧反应》一文中研究指出本文中,我们设计合成了原位负载于发蓝铁丝上的四氧化叁钴(Co_3O_4)自支撑电催化剂,获得了较高的析氧反应活性.在该复合催化剂中,尖晶石结构的Co_3O_4与发蓝层的主要成分四氧化叁铁(Fe_3O_4)具有高度的结构相似性与晶格匹配度,有效地保证了表面活性层的紧密生长,降低了催化过程中的电荷转移电阻并促进了电荷的快速传导,获得了高效的析氧反应活性与稳定性.受益于上述结构优势,该电催化剂显示出低至250mV的析氧反应起始过电位和较高的催化电流密度.在外加电压为1.65Vvs.RHE时,析氧反应电流密度高达124mA cm~(-2).此外,该催化剂也显示出优越的电化学稳定性,使其有望应用于大规模水裂解制氢电解槽.(本文来源于《聊城大学学报(自然科学版)》期刊2019年05期)
王海文,邓璐,张顺江,邵尤欣,王浩[10](2019)在《基于金属有机骨架的电催化剂的研究进展》一文中研究指出金属-有机骨架化合物(MOFs)是一种多孔材料,金属离子或金属簇作为节点,通过配位作用与有机配体连接形成,可以形成良好的晶体结构。目前用于氧还原反应(ORR)的电催化剂不能满足催化活性高、耐久性好、成本低的应用要求,极大地限制了这类创新技术的实际应用,本文介绍了由结构、形状和尺寸确定的金属-有机骨架化合物(MOFs)作为热解前驱体热解而成的新型的非贵金属催化剂。研究了在ORR中,影响MOFs催化剂催化速率的因素,并且介绍了以MOFs为前驱体的多孔金属氧化物和多孔金属氧化物/碳复合物,以及对MOFs催化剂做出了未来的展望。(本文来源于《化学工程与装备》期刊2019年08期)
电催化剂论文开题报告
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
氨是一种重要的无机化工原料,氮气是自然界最为丰富的自然资源之一,用氮气通过化学反应合成氨,近百年来一直是化工行业的重要生产技术之一。与传统合成氨技术相比,电催化合成氨技术能够有效减少能耗、减少CO_2排放量,因而成为最有前景的化工合成技术之一。以氮气为原料,利用电催化技术合成氨既达到固氮又能实现生产国计民生必需化工原料目标,但受制于合成反应的动力不足之瓶颈。因此,寻找原料丰富、行之有效、价格低廉、制备技术可行的合成氨电催化剂,成为该研究热点。本文在介绍合成氨电催化技术基本原理的基础上,重点综述了近几年国内外在电催化合成氨催化剂领域的最新研究现状,并对其未来发展趋势进行了分析与展望。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
电催化剂论文参考文献
[1].张楚风,陈哲伟,连跃彬,陈宇杰,李沁.泡沫铜基底原位生长的铜基导电金属有机框架作为双功能电催化剂[J].物理化学学报.2019
[2].庞宏建,刘伟.合成氨电催化剂研究进展[J].江西化工.2019
[3].杨慧敏,陈耀,覃勇.原子层沉积方法在设计制备高效电催化剂中的应用(英文)[J].ChineseJournalofCatalysis.2020
[4].赵挥,翁晨晨,任金涛,葛丽,刘玉萍.有机膦酸盐衍生的氮掺杂的磷酸钴/碳纳米管杂化材料作为高效氧还原电催化剂(英文)[J].ChineseJournalofCatalysis.2020
[5].刘广权,彭丽萍,曹林洪,吴卫东.用于氧还原反应的高耐久活性叁元Pt-Ti-Mg薄膜电催化剂[C].TFC'19第十五届全国薄膜技术学术研讨会摘要集.2019
[6]..我国科学家研制出新型高效室温固氮电催化剂[J].中国粉体工业.2019
[7].吴睿,刘雄雄,陈俊松.高性能多孔Fe/N共掺杂碳纳米管电催化剂研究(英文)[J].电子科技大学学报.2019
[8].孙旭平.泡沫镍担载NiCoP纳米片用作高效双功能水分解电催化剂(英文)[J].ChineseJournalofCatalysis.2019
[9].高丽,曹珊珊,谢俊峰.四氧化叁钴@发蓝铁丝自支撑电催化剂用于析氧反应[J].聊城大学学报(自然科学版).2019
[10].王海文,邓璐,张顺江,邵尤欣,王浩.基于金属有机骨架的电催化剂的研究进展[J].化学工程与装备.2019