李淑萍河北省沽源县第五小学076550
摘要:把一组对象放在一起,作为讨论的范围,这是人类早期就有的思想方法,继而把一定程度抽象了的思维对象,如数学上的点、数、式放在一起作为研究对象,这种思想就是集合思想。集合思想作为一种思想,在小学数学中就有所体现。在小学数学中,集合概念是通过画集合图的办法来渗透的。
关键词:运用数学方法集合思想
一、形象思维方法
数学发展到今天,已成为一个符号化的世界。符号就是数学存在的具体化身。英国著名数学家罗素说过:“什么是数学?数学就是符号加逻辑。”数学离不开符号,数学处处要用到符号。怀特海曾说:“只要细细分析,即可发现符号化给数学理论的表述和论证带来的极大方便,甚至是必不可少的。”数学符号除了用来表述外,它也有助于思维的发展。如果说数学是思维的体操,那么,数学符号的组合谱成了“体操进行曲”。现行小学数学教材十分注意符号化思想的渗透。
如用圆圈图(韦恩图)向学生直观地渗透集合概念。让他们感知圈内的物体具有某种共同的属性,可以看作一个整体,这个整体就是一个集合。利用图形间的关系则可向学生渗透集合之间的关系,如长方形集合包含正方形集合,平行四边形集合包含长方形集合,四边形集合又包含平行四边行集合等。
数学模型方法就是对所研究的问题构造出相应的数学模型,通过对数学模型的研究来解决原型问题的方法。从广义的观点看,数学概念、性质、法则、公式都是数学模型。从狭义的观点看,解决小学数学中的具体的数学问题,特别是解答应用题都需要构建数学模型来解决。
数形结合是指将数(或量)与形(或图)结合起来进行分析、研究、解决问题的一种思维策略,即根据问题的需要,把数量关系的问题转化为图形的性质和特征来研究,或者把图形的性质问题转化为数量关系的问题来研究,从而利用数形的辩证法和各自的优势,得到解决问题的方法。
二、一对一的思维方法
对应是人的思维对两个集合间问题联系的把握,是现代数学的一个最基本的概念。小学数学教学中主要利用虚线、实线、箭头、计数器等图形将元素与元素、实物与实物、数与算式、量与量联系起来,渗透对应思想。如人教版一年级上册教材中,分别将小兔和砖头、小猪和木头、小白兔和萝卜、苹果和梨一一对应后,进行多少的比较学习,向学生渗透了事物间的对应关系,为学生解决问题提供了思想方法。三、将抽象的东西“原型化”
借助“形”的直观建立数学概念。由于概念的抽象与概括性,教学时要向学生提供大量感性材料,而“形”的材料常常是最有效的。如在数小棒、搭多边形中认识整数,在等分图形中认识分数、小数;利用交集图理解公因数与公倍数,等等。借助“形”的操作形成数学规则。让学生明确规则的合理性、理解其推导过程的意义,不仅仅在于理解算理,更重要的在于学会学习,实现过程性目标。而数形结合能降低思维难度,让学生有信心和能力归纳出法则。借助“形”的启发获得解题思路。借助图形解题的最大优势是将抽象问题形象化。因为将数量信息反映在图形上,能直观表现数量间关系,从而获得解题思路。尤其在解较复杂的应用题(如“种植株数”、“截断”等)时,恰当选用线段图、示意图、集合图等,是寻找解题途径最有效的手段之一。
四、形成初步的函数概念
恩格斯说:“数学中的转折点是笛卡儿的变数。有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了。”我们知道,运动、变化是客观事物的本质属性。函数思想的可贵之处正在于它是运动、变化的观点去反映客观事物数量间的相互联系和内在规律的。学生对函数概念的理解有一个过程。在小学数学教学中,教师在处理一些问题时就要做到心中有函数思想。
五、以数释形的方法
“形”具有形象直观的优势,但也有其粗略和不便于表达的问题,需要以简洁的数学描述、形式化的数学模型表达,才能使学生更准确地把握“形”的特征。借助数学运算的方式判断图形的性质。例如,求解“周长相同的正方形、长方形和圆,哪个面积最大?哪个最小?”由于作图困难,凭图形直观难以判断,而通过设定特殊值作具体计算,图形大小关系就比较容易判别了。借助数学语言的描述认识图形的特征。例如,教学《空间和方位》,教师引导学生掌握用东、南、西、北和东北、西北、东南、西南这些词语描绘物体所在的方向,用方向、角度数和距离或数对来表示物体所在的位置,使学生认识到以数释形的精确和周密。
六、思维过程达到飞跃
在研究一般性问题之前,先研究几个简单的、个别的、特殊的情况,从而归纳出一般的规律和性质,这种从特殊到一般的思维方式称为归纳思想。数学知识的发生过程就是归纳思想的应用过程。在解决数学问题时运用归纳思想,既可由此发现给定问题的解题规律,又能在实践的基础上发现新的客观规律,提出新的原理或命题。因此,归纳是探索问题、发现数学定理或公式的重要思想方法,也是思维过程中的一次飞跃。
我们在小学数学教学中应注重一般性数学方法的教学渗透,为学生有效地获得数学知识、建构数学认知、形成数学思想奠定基础。一般性数学方法的常见类型有合情推理、数学抽象、数学化归、数学模型、数形结合等。