基于深度学习的钨钼找矿靶区预测方法研究

基于深度学习的钨钼找矿靶区预测方法研究

论文摘要

随着矿产勘查工作由浅部矿向深部隐伏矿、由易识别矿向难识别矿发展,找矿难度日益增大,地质专家越来越重视新理论、新方法、新技术的应用。深度学习作为人工智能的前沿领域/技术,对于实现矿产资源预测"智能化预测评价"具有得天独厚的优势。本文以陕西省镇安县西部钨钼矿集区单元素化探异常原始数据为基础,提出了基于深度学习的钨钼矿产评价方法。该方法以归一化地球化学数据作为模型训练数据,通过深度学习中深度自编码网络方法实现异常值提取进而识别重点成矿有利地段,实现矿产资源找矿远景区定性预测。研究结果表明,在对957条单元素化探异常原始数据分类且做好模型标签后,整个过程在计算机的"黑盒子"中自动完成学习和预测,相较于传统预测研究方法,本文方法具有自动化程度高和客观性强的特征。此外,本文利用已知矿点构建训练数据集,采用随机森林方法对预测区进行矿产资源找矿靶区预测圈定,为进一步缩小找矿靶区范围提供科学依据。

论文目录

  • 1 引言
  • 2 研究区概况与数据源
  •   2.1 研究区概况
  •   2.2 数据源
  • 3 研究方法
  •   3.1 矿产预测学习模型确定
  •   3.2 自编码网络模型构建
  •   3.3 实验设置
  •     3.3.1 深度自编码网络方法
  •     3.3.2 随机森林方法
  • 4 实验结果与分析
  •   4.1 深度自编码神经网络
  •   4.2 随机森林方法
  • 5 结论与讨论
  • 文章来源

    类型: 期刊论文

    作者: 蔡惠慧,朱伟,李孜轩,刘园园,李龙斌,刘畅

    关键词: 随机森林方法,深度学习,钨钼多金属矿产资源,大数据,预测,评价,陕西镇安西部

    来源: 地球信息科学学报 2019年06期

    年度: 2019

    分类: 基础科学,工程科技Ⅰ辑

    专业: 地质学,矿业工程

    单位: 中国地质大学(北京),中国地质调查局发展研究中心,中国地质大学(武汉)信息工程学院,中国地质大学(武汉)国家地理信息系统工程技术研究中心

    基金: 智能地质调查系统开发与推广(DD20160355)~~

    分类号: P618.2

    页码: 928-936

    总页数: 9

    文件大小: 2030K

    下载量: 228

    相关论文文献

    • [1].基于迭代随机森林算法的糖尿病预测[J]. 长春工业大学学报 2019(06)
    • [2].基于改进随机森林的城市河流水生态健康评价研究[J]. 海河水利 2019(06)
    • [3].基于随机森林癫痫患者脑电数据的分析研究[J]. 中国数字医学 2020(01)
    • [4].基于局部均值分解和迭代随机森林的脑电分类[J]. 吉林大学学报(信息科学版) 2020(01)
    • [5].网贷平台数据的随机森林预测模型实证分析[J]. 宜宾学院学报 2019(12)
    • [6].采用单类随机森林的异常检测方法及应用[J]. 西安交通大学学报 2020(02)
    • [7].随机森林数据情感挖掘方法分析[J]. 通讯世界 2020(01)
    • [8].运用最大熵模型和随机森林模型对东北红松分布的模拟[J]. 东北林业大学学报 2020(03)
    • [9].基于随机森林算法的城区土地覆盖分类研究[J]. 河北省科学院学报 2020(01)
    • [10].运用随机森林模型对北京市林分蓄积生长量的预测[J]. 东北林业大学学报 2020(05)
    • [11].融合人工鱼群和随机森林算法的膝关节接触力预测[J]. 中国医学物理学杂志 2020(04)
    • [12].结合特征选择和优化随机森林的无线网络数据丢失重建[J]. 上海电力大学学报 2020(03)
    • [13].基于随机森林算法的耕地质量定级指标体系研究[J]. 华南农业大学学报 2020(04)
    • [14].一种基于随机森林的组合分类算法设计与应用[J]. 电子设计工程 2020(16)
    • [15].基于随机森林算法的日光温室内气温预测模型研究[J]. 中国农学通报 2020(25)
    • [16].基于因子分析和迭代随机森林方法的学生成绩综合评价——以都匀市某高中为例[J]. 黔南民族师范学院学报 2020(04)
    • [17].基于随机森林模拟的辽宁省降水量空间分布研究[J]. 陕西水利 2020(09)
    • [18].随机森林模型在膝关节炎患者结构特征与症状定量分析中的应用(英文)[J]. 磁共振成像 2020(10)
    • [19].基于特征选择的极限随机森林算法研究[J]. 计算机应用研究 2020(09)
    • [20].随机森林回归分析方法在代谢组学批次效应移除中的应用[J]. 中国卫生统计 2020(05)
    • [21].一种面向非均衡分类的随机森林算法[J]. 计算机与现代化 2018(12)
    • [22].随机森林模型和决策树模型在肝硬化上消化道出血预后中的应用[J]. 中国卫生统计 2019(02)
    • [23].基于随机森林的债券违约分析[J]. 当代经济 2018(03)
    • [24].基于改进网格搜索算法的随机森林参数优化[J]. 计算机工程与应用 2018(10)
    • [25].随机森林在城市不透水面提取中的应用研究[J]. 云南师范大学学报(自然科学版) 2017(03)
    • [26].一种顺序响应的随机森林:变量预测和选择[J]. 小型微型计算机系统 2017(08)
    • [27].基于随机森林回归的军械器材需求预测[J]. 自动化应用 2017(09)
    • [28].流式大数据下随机森林方法及应用[J]. 西北工业大学学报 2015(06)
    • [29].面向高维数据的随机森林算法优化探讨[J]. 商 2016(04)
    • [30].深度随机森林在离网预测中的应用[J]. 计算机科学 2016(06)

    标签:;  ;  ;  ;  ;  ;  ;  

    基于深度学习的钨钼找矿靶区预测方法研究
    下载Doc文档

    猜你喜欢