闪电等离子体通道半径及特性参数沿径向的演变

闪电等离子体通道半径及特性参数沿径向的演变

论文摘要

利用高速摄谱仪在青海记录的六次地闪过程的光谱资料,依据光谱的不同辐射成分,诊断得到闪电等离子体通道的温度;结合与闪电同步的地面电场变化信息和通道的光学图片、以及闪电光谱辐射强度与通道半径的相关性,得到了闪电外围发光通道和核心电流通道的半径。研究发现,不同闪电的光谱轮廓和谱线结构存在一定差异。闪电外围发光通道和核心电流通道的半径分别在5.03-7.96cm和0.66-1.01cm的范围,均在文献报道范围之内,相对应的通道温度分别在27300-30300和3300-5800K的范围。在此基础上,根据热传导方程和能量守恒,获得了温度沿闪电等离子体通道径向的分布,并首次得到了通道发光边缘(500K)的半径。结果表明:温度沿通道径向按对数规律衰减。在半径约13cm内,温度从峰值30000K左右降到300K。20000K以上高温通道半径低于2cm,这一范围内,温度梯度比较大,沿径向急剧下降,随后逐渐降低。通道发光边缘的半径在6.94-13.0cm的范围。依据空气等离子体的电导率是温度的函数,估算了放电等离子体通道的电导率,并首次得到了电导率沿通道径向的分布。结果表明:电导率随半径的衰减规律与温度的类似,都是随着半径的增大,衰减逐渐变缓。半径约在4.6cm内,电导率沿半径的增大而急剧衰减,符合对数衰减规律,电导率从20000Sm-1减为500Sm-1。其中,在半径约2.00cm的通道内,电导率均在104Sm-1量级。半径大于4.6cm后,电导率衰减变缓,沿径向呈指数规律衰减。通道半径约在9.7cm左右,电导率衰减为10-7Sm-1左右,相应温度在1500K左右;对应温度为500K的发光边缘的电导率为10-14Sm-1,与纯净空气电导率的数量级相同。

论文目录

  • 摘要
  • Abstract
  • 第一章 绪论
  •   1.1 研究背景
  •     1.1.1 研究意义
  •     1.1.2 研究现状
  •   1.2 闪电综述
  •     1.2.1 闪电分类
  •     1.2.2 云-地闪放电过程
  •   1.3 本工作的主要内容
  •   参考文献
  • 第二章 理论方法和实验设备
  •   2.1 云-地闪电放电的主要特征
  •   2.2 理论方法
  •     2.2.1 闪电等离子体的温度诊断
  •     2.2.2 放电通道的电导率
  •     2.2.3 闪电通道的半径
  •     2.2.4 闪电等离子体通道径向的热量传输
  •   2.3 实验设备
  •     2.3.1 光学观测设备
  •     2.3.2 光谱观测设备
  •     2.3.3 电学观测设备
  •   参考文献
  • 第三章 闪电等离子体通道半径
  •   3.1 引言
  •   3.2 资料分析
  •     3.2.1 闪电等离子体通道温度
  •     3.2.2 闪电等离子体通道半径
  •   3.3 结论
  •   参考文献
  • 第四章 闪电等离子体通道温度及电导率沿径向的分布
  •   4.1 引言
  •   4.2 资料分析
  •     4.2.1 温度沿闪电等离子体通道径向的分布
  •     4.2.2 电导率沿闪电等离子体通道径向的分布
  •   4.3 结论
  •   参考文献
  • 第五章 总结与展望
  •   5.1 主要结论
  •   5.2 工作展望
  • 攻读硕士期间发表和完成的工作
  • 参加的学术交流活动
  • 致谢
  • 文章来源

    类型: 硕士论文

    作者: 安婷婷

    导师: 袁萍

    关键词: 闪电等离子体通道,回击,半径,温度分布,电导率分布

    来源: 西北师范大学

    年度: 2019

    分类: 基础科学

    专业: 物理学,气象学

    单位: 西北师范大学

    基金: 国家自然科学基金(11475139和11605108)

    分类号: O53;P427.3

    总页数: 63

    文件大小: 3214K

    下载量: 53

    相关论文文献

    • [1].Upward propagation of lightning-generated whistler waves into the radiation belts[J]. Science China(Technological Sciences) 2020(02)
    • [2].Thermal damage analysis of aircraft composite laminate suffered from lightning swept stroke and arc propagation[J]. Chinese Journal of Aeronautics 2020(04)
    • [3].Quality Assessment of FY-4A Lightning Data in Inland China[J]. Journal of Tropical Meteorology 2020(03)
    • [4].Experimental and analytical investigation on metal damage suffered from simulated lightning currents[J]. Plasma Science and Technology 2017(12)
    • [5].Evolution simulation of lightning discharge based on a magnetohydrodynamics method[J]. Plasma Science and Technology 2018(07)
    • [6].Methods of Lightning Nowcasting Based on Radar Echo Extrapolation Technology[J]. Meteorological and Environmental Research 2016(05)
    • [7].Simulation of Quasi-Linear Mesoscale Convective Systems in Northern China:Lightning Activities and Storm Structure[J]. Advances in Atmospheric Sciences 2016(01)
    • [8].Numerical simulation and experiment validation on lightning-induced effects of a special vehicle[J]. The Journal of China Universities of Posts and Telecommunications 2016(03)
    • [9].Rainstorms,Thunder,and Lightning[J]. 数理天地(初中版) 2020(05)
    • [10].在闪电照耀下[J]. 十万个为什么 2017(02)
    • [11].今天还微笑的花朵[J]. 新高考(英语进阶) 2017(04)
    • [12].Particle bursts in the inner radiation belt related to global lightning activity[J]. Science China(Technological Sciences) 2013(11)
    • [13].Application and Research of Meteorological Data in Lightning Protection Technical Service of Oil Depot[J]. Meteorological and Environmental Research 2019(01)
    • [14].Propagation of positive, negative, and recoil leaders in upward lightning flashes[J]. Earth and Planetary Physics 2019(02)
    • [15].A Review of Atmospheric Electricity Research in China from 2011 to 2018[J]. Advances in Atmospheric Sciences 2019(09)
    • [16].Establishment and Test of a Lightning Potential Prediction Index[J]. Meteorological and Environmental Research 2019(05)
    • [17].Calculating the electron temperature in the lightning channel by continuous spectrum[J]. Plasma Science and Technology 2017(12)
    • [18].Low-frequency E-field Detection Array(LFEDA)—Construction and preliminary results[J]. Science China(Earth Sciences) 2017(10)
    • [19].Semi-Idealized Modeling of Lightning Initiation Related to Vertical Air Motion and Cloud Microphysics[J]. Journal of Meteorological Research 2017(05)
    • [20].Climatology of Lightning Activity in South China and Its Relationships to Precipitation and Convective Available Potential Energy[J]. Advances in Atmospheric Sciences 2016(03)
    • [21].Analysis of Dispersed Lightning Stroke around a Mobile Communication Base Station[J]. Meteorological and Environmental Research 2016(02)
    • [22].Electromagnetic Environment Impact of Mobile Communication Iron Tower on Adjacent Building and Its Countermeasures[J]. Meteorological and Environmental Research 2015(04)
    • [23].Error Correction of Lightning Location Data[J]. Meteorological and Environmental Research 2013(10)
    • [24].Discussion about the Relationship between Thunderstorm Days and Lightning Density[J]. Meteorological and Environmental Research 2013(12)
    • [25].Study on the Scope of Small Amplitude of Cloud-to-ground Lightning in Lightning Weather Monitoring[J]. Meteorological and Environmental Research 2014(03)
    • [26].Numerical simulation of the effect of lower positive charge region in thunderstorms on different types of lightning[J]. Science China(Earth Sciences) 2014(09)
    • [27].A Comparison of the Characteristics of Total and Cloud-to-Ground Lightning Activities in Hailstorms[J]. Acta Meteorologica Sinica 2013(02)
    • [28].闪电放电通道的等离子体特性(英文)[J]. 高电压技术 2013(10)
    • [29].中国电网近年来防雷技术发展及应用效果(英文)[J]. 高电压技术 2013(10)
    • [30].Evolution of the Total Lightning Activity in a Leading-Line and Trailing Stratiform Mesoscale Convective System over Beijing[J]. Advances in Atmospheric Sciences 2011(04)

    标签:;  ;  ;  ;  ;  

    闪电等离子体通道半径及特性参数沿径向的演变
    下载Doc文档

    猜你喜欢