一、深层混凝土搅拌法加固软土地基(论文文献综述)
杨天琪[1](2021)在《临清高速公路河谷区多层软土强夯加固地基路基沉降分析与预测》文中研究说明随着我国经济的高速发展,"一带一路"和交通强国战略的提出,全面开放新格局的形成,我国公路建设的规模体量不断扩大,对公路建设提出了更高的要求。云南省地处我国西南边境,与越南、缅甸、老挝相接壤,隔望印度洋和太平洋,是“一带一路”连接交汇的重要战略节点,而在云南地区广泛分布着软土、红黏土、膨胀土等不良性质的特殊性土,对工程建设造成了很大的困难。本文依托云南省临清高速公路工程,对该项目河谷区软硬交错互层多层软土地基土体特性进行了2年的现场监测试验,采集实测数据两万余个,对河谷区多层软土地基路基沉降进行了分析与预测,并运用有限差分软件FLAC3D进行数值模拟分析,论文主要取得了如下研究成果:(1)揭示了河谷区多层软土地基工程性质变化特征针对云南省临清高速河谷地区多层软土地基软硬层反复交替沉积的特殊工程地质条件,分析了该河谷区多层软土地基的地层成因、分布规律及工程性质;根据地层特征、工程性质把该地区软土地层分成了浅、深、夹层型三种地基类型;阐明了强夯垫层法、堆载预压法以及强夯垫层联合静压堆载法的加固机理。(2)基于现场监测数据分析了临清高速公路复杂沉积环境软土强夯加固地基路基10个典型监测断面沉降及固结变化规律基于实测数据,分析了河谷区多层软土地基的沉降变化规律及固结特征;通过静力触探试验评价了强夯垫层联合堆载静压法对河谷区多层软基的加固效果;根据地基数据反馈,针对强夯垫层法加固河谷区多层软基施工工艺提出了改进建议;提出在深厚软基上进行工程建设应重视地基的侧移与稳定性问题。(3)模拟计算并分析了河谷区多层软土强夯加固地基路基沉降时空变化特征通过FLAC3D数值计算,对比分析了实测数据与数值计算结果,验证了模型的正确性;揭示了河谷区多层软土强夯加固地基的沉降形态特征;通过沉降-孔压曲线分析了软土地基的固结规律并推导了固结公式;建立了多种工况模型,分析了不同地基处理方法针对河谷区多层软土地基加固效果与适用性。(4)建模预测了河谷区多层软土强夯加固地基路基沉降发展趋势论述了沉降预测基本原理,对比分析了多种沉降预测模型的优缺点;提出了最适合河谷区多层软土地基沉降预测的Asaoka方法;修正了分层总和法针对河谷区多层软土地基沉降预测;发现数据样本的选取将显着影响沉降预测精度。
Editorial Department of China Journal of Highway and Transport;[2](2021)在《中国路基工程学术研究综述·2021》文中研究表明作为路面的基础,稳定、坚实、耐久的路基是确保路面质量的关键,而中国一直存在着"重路面、轻路基"的现象,使得路基病害导致的路面问题屡禁不止。近年来,已有越来越多的学者注意到了路面病害与路基质量的关联性,从而促进了路基工程相关的新理论、新方法、新技术等不断涌现。该综述以近几年路基工程相关的国家科技奖的技术创新内容、科技部及国家自然科学基金项目、优秀中文权威期刊的论文、Web of Science中的高水平论文的关键词为依据,系统分析了国内外路基工程五大领域的研究现状及未来的发展方向。具体涵盖了:地基处理新技术、路堤填料工程特性、多场耦合作用下路堤结构性能演变规律、路堑边坡的稳定性、路基支挡与防护等。可为路基工程领域的研究人员与技术人员提供参考和借鉴。
林智德[3](2020)在《真空联合堆载预压法及其在澳门新城填海工程的应用》文中指出随着国家综合实力的提升,各地区的经济也实现了飞速发展,尤其是随着全球化时代的到来,为了面对越来越激烈的市场竞争环境,高效的道路运行至关重要。作为中国非常重要的特区之一,澳门的填海工程建设越来越受到重视,基于此,本文就以澳门新城填海工程为研究对象,系统性分析了该区域的软土性质及处理技术。根据现有数据情况,对本填土区天然淤泥推荐采用插打塑料排水板+真空联合堆载预压法;对于回填层采用振冲+振动碾压法进行地基处理。主要内容和取得的成果:(1)本文首先针对澳门新城填海区软土特点收集了国内外的相关文献研究资料,提出了本文研究的背景和意义,并根据资料分析和澳门新城填海工程实际情况提出了本次的研究方法和内容;(2)该部分主要是针对真空联合堆载预压法理论及基本原理进行了简单的阐述,并对其在软基处理中的实际应用要点进行了分析,也为本文的研究提供了理论支持;(3)该部分针对澳门新城填海工程的实际情况展开分析,了解了工程的水文条件和工程地质情况,并进一步提出了应用真空联合堆载预压法的难点所在,以及阐述了预压法在澳门新城填海工程的实际应用工艺;(4)根据第三章节的分析研究,提出符合具澳门地区特色的填土区天然淤泥地基处理方案,同时对其整个实际工程的运行、运作的功效、结果等因素进行深入的分析和讨论。其次,对填土区天然淤泥地基监测技术的相关方案进行分析及研究,同时利用监测数据作为推算最终沉降量;并验算计算方法是否正确,对各个影响参数进行细化分析。再次,针对填土区天然淤泥地基加固工程特点,为确保排水系统和密封系统的质量,须根据实际情况进行现场抽样实验检测及肉眼检测等方法,以保证工程的顺利进行。这也是本论文的重点内容;目前真空联合堆载预压法已经广泛运用到海堤建造工程,具有非常显着的优势,但受到材料、地质及其他因素的影响,实际在开展工程建设的时候有很多难点问题亟待解决。需要因地制宜,采用合理科学的施工方法,因此本文针对澳门新城填海工程中应用真空联合堆载预压法展开多角度深层次研究。
刘松玉,周建,章定文,丁选明,雷华阳[4](2020)在《地基处理技术进展》文中研究指明我国基础设施和城市现代化建设日新月异,地基处理技术得到快速发展和应用。文章简要地回顾我国地基处理技术与理论研究发展历史,重点总结介绍近五年涌现出的地基处理新技术、新工艺与工程应用,并分析设计理论和规范发展特点,探讨地基处理质量控制和施工技术智能化的发展趋势,提出地基处理技术的发展方向。
蔡丹[5](2020)在《闭合水泥土围护桩深厚软土复合地基联合堆载预压模型试验研究》文中研究指明深厚软土地基的处理一直是土木工程中的热门研究问题。由于深厚软土地基存在软土覆盖层较厚、结构稳定性差及承载能力低等问题,这使得各种传统处理方法往往难以达到理想的效果。近年来,随着地基处理技术的不断进步,软土地基的处理方式逐渐由单一技术向两种或多种技术联合运用的趋势发展,联合处理方法能够综合各单项技术的优势以取得更好的加固效果。本文将闭合水泥土围护桩施工技术与真空联合堆载预压技术相结合,通过对加固的理论分析、室内试验、模型试验和数值模拟的方法探讨了联合方法对深厚软土地基的加固效果和工后复合地基的承载特性,主要研究内容和成果如下:(1)对采集的软土进行一系列土工试验,确定土体的物理力学性质。分析普通硅酸盐水泥对原状土改良的基本原理和反应过程。通过设计水泥土配合比,确定水泥土的无侧限抗压强度增长变化趋势,为后续的模型试验提供理论依据。(2)基于闭合水泥土围护桩深厚软土复合地基条件下进行真空联合堆载预压的模型试验。设立两组采用不同加载方式的联合方案试验组和传统真空联合堆载预压的对照组,通过对各组试验的处理结果分析联合方案的加固效果及加固特点。在模型试验中探讨了各组工况中排水板内的真空度分布、孔隙水压力消散程度、含水率及固结沉降量的变化规律。结果表明,联合方案的加固效果明显优于传统方案,试验组的平均固结度较对照组高出8%。联合方案能够提高深厚软土地基的固结进程,进而缩短加固处理的工期。(3)使用FLAC3D数值模拟软件建立联合方案工后复合地基计算模型。根据水泥土围护桩在复合地基中受荷所承担的作用,将复合地基分为“围护型”和“承压型”。分析了“围护型”复合地基在各级荷载下土芯、连续墙及墙外表层土体的变形特性。荷载作用下“围护型”复合地基的变形主要集中在土芯、连续墙和墙体外侧05m的水平范围及地面以下06m的深度内,根据模拟结果进行“围护型”复合地基的综合应用探讨。(4)根据“承压型”复合地基的P-S曲线和荷载比分担情况确定其极限承载力,并通过理论分析进行了“承压型”复合地基的极限承载力验算。由近似计算方法的结果与数值模拟结果进行比较,得到了各承载分项的安全系数经验值。
谢卫红[6](2019)在《乐海围垦区道路网软土地基处理方法研究》文中研究指明随着我国经济水平的快速发展,道路建设进入高峰期,保障道路建成后的安全高效运营是重中之重。但沿海地区软土地基分布区域十分广泛,软土因为其压缩性高、变形量大且持续时间长,抗剪强度低等缺点,可能会引起路面开裂、桥头跳车、路堤严重变形甚至失稳等工程灾害,是道路的安全和稳定的重大隐患。因此,为了解决沿海地区软土地基带来的沉降或者差异沉降等问题,必须对软土地基进行处理。本文主要介绍了软土的定义及其工程特点,常见的软土地基处理方法等。以浙江省温州市乐海围垦道路网工程为工程实例,首先对该工程的地质特征和水文特征等进行调查研究,结合项目存在特殊的周边环境和复杂的软土地质条件,从施工成本、工程进度等方面进行了对比,选择了低能量强夯法作为该工程的地基处理方法。低能量强夯法在处理地基过程中可适当的降低夯击能量,有效的提高地基承载力性能,处理的成本低,同时操作也很简单,减小对周边环境的影响。低能量强夯法在地基处理过程中被经常采用,该工法是近年来经10多年开发研究、渐趋成熟的加固软土新技术。该工法和强夯处理法之间有着显着的差异,根据强夯法的基本原理,在处理过程中,首先要将土体的结构进行破坏,然后再重新施加力,达到重新固结的目的;但是强夯法在软粘土的处理过程中,由于软粘土本身的性质不同,所以导致在强度恢复过程中非常缓慢,因此这种方法只能适用于粘性土在一定含水量范围内的情况。而采用低能量强夯法,可以在确保土体的结构不发生变化的情况下,或不发生显着的破坏情况下,采用合适的工艺方法对土体进行夯实。通过对低能强夯法加固机理及关键指标分析,为数值模拟的建立提供了理论依据,通过有限元数值模型的基本假定和基本理论,使用Midas GTS NX建立了数值计算模型,通过对不同夯击能加固深度的计算,得出了1500kN·m为项目最佳的夯击能选择,所以选择落距为7.5m。通过对现场进行了低能强夯法试验段,来验证此方法的可行性,通过现场监控数据和监测数据的分析,采用低能量强夯法对地基的处理效果能够满足规范和工程需要,且其经济性较好,是所有地基处理方法中最适合本工程的地基处理方法。根据低能量强夯法的特点,制定了地基处理加固的方案,拟定了地基处理过程中的注意事项,低能量强夯法的验收标准等。最后,利用监测工作从而对软土地基的操作结果展开了研究,根据结果我们观察到,此次项目中围绕软土地所运用的低能量强夯法可以实现加固的效果。在进行针对性处理后,后续形成的软土地可以符合设计标准,为同类型软土地区的地基处理提供借鉴和参考。
陈思佳[7](2019)在《舟山地区市政道路软土路基处理技术》文中提出软土地区市政道路经常会出现承载力不足、路基出现不均匀沉降引发的路面裂缝、桥头跳车等问题。特别是随着城市发展到一定规模,基础设施建设逐渐将重心从新建道路转向旧路改扩建道路。一些老路经过近十几年的使用,当初的车辆荷载设计和交通量的设计都已经不能满足当今道路的使用需要,快速路、主干路、次干路拼宽改建已经成为当今市政建设非常重要的组成部分。因此,全断面地基处理和新老路基的拼宽处理已经成为软土分布地区城市道路修筑的重要课题。本文以舟山地区城市道路为研究对象,分析了舟山地区各区域的地质情况和道路修筑特点,将该地区道路分为东港填海城区(二期、三期)、新港工业园区(二期)、本岛南部、白泉镇区、渔山岛五个区域,总结归纳了各区域市政道路建设中软土地基处理过程中遇到的问题。通过归纳与分析,梳理了舟山地区市政道路的常见的病害形式为:城市道路交叉口的车辙、路面的纵向裂缝、路面的网裂、基层反射裂缝,并分析了成因。东港填海城区为近几年围海造田新形成的城区,地基沉降次固结还未结束,故宜先采用一期路面进行前期使用,待沉降基本结束再根据沉降差重新施工二期路面。新港工业园区(二期)地质条件较差,为砂砾吹填围垦区,宜通过强夯进行置换的方法处理。本岛南部和白泉镇区主要采用高压旋喷桩和钉型水泥双向搅拌桩对软土地基进行加固,该法具有对已形成的地块干扰小、复合地基承载力高、工后沉降小、节约造价等优点。渔山岛区域采用碎石桩结合塑料排水板的方法进行加固,工后沉降较少,地下水干扰小。
曾昊[8](2019)在《南益高速公路软基处治方案设计与现场试验研究》文中研究指明为了进一步寻找适用于洞庭湖平原地区的软土地基处治方式,选用了南县至益阳高速公路北段的软土地基作为研究对象,综合考虑地质构造的复杂性、软基处理深度、施工的简易性和经济性。从排水固结法(塑料排水板)、水泥土搅拌桩复合地基等五种方案中,选取较为合适的水泥土搅拌桩和PHC预应力管桩复合地基作为该软土地基的处治方案。论述了南益高速公路北段的软基处理和桩基选型的思路、复合地基设计参数、施工工艺,并对处治过后的地基分别进行钻芯试验和低应变试验,通过对试验结果进行分析,保证两种处治方式的成桩质量能够对增强地基承载力、减少地基沉降起到预期作用。最后对两种处治方式下的软土地基进行静载荷试验,在得出经过理论计算印证的试验结果后,根据试验结果以及施工过程中所出现的问题、两种处治方式的所带来的社会效益和经济效益等方面来选出较为适合洞庭湖平原地区软土地基的处治方式。通过统计分析的方法,按照相关规范对依托工程的4170根水泥土搅拌桩和408根PHC预应力管庄复合地基进行了静载荷试验,并对两种方案的施工质量、施工工艺、经济性进行比较分析。发现前者在经济性方面具有优势,但后者加固效果更为显着,得出了应针对实际的地质情况,合理结合两种处治方式最为经济、科学的结论。本文研究的内容和成果如下:(1)通过对岩土层进行的原位试验与岩土试样的室内试验,得到了处理路段中分布较广的软基土的物理力学性质以及岩土层的天然地基承载力。(2)据工程勘测地质报告与相关案例经验,对软基处治方案进行分析、必选,从五种处治方案中选择了技术相对成熟、经济成本较低的水泥土搅拌桩和工期较短、处治效果明显的PHC预应力管桩复合地基两种处治方式。(3)分析原位试验与室内试验所得数据,确定水泥土搅拌桩复合地基与PHC预应力管桩复合地基的设计参数,并分别对他们的承载力与沉降进行计算,将计算结果与现场静载荷试验相印证用试验结果来证明理论计算的正确性,同时可用理论计算得出的相关结论来帮助完善现场试验。(4)根据“建筑地基检测技术规范”(JGJ 340—2015)等规范对47根水泥土搅拌及238根PHC预应力管桩进行钻芯试验与低应变试验,确保桩身质量满足设计要求,为后续静载荷试验的准确性提供保证。(5)从施工工艺、施工质量、经济性三个角度出发分析两种处治方式的特点与优势,得出了应当根据实地情况,科学的采用多种处治方法相结合的处理方案为最佳软基处治方式的结论,为如何灵活、合理的使用软基处治方式处理软土地基提供了一些经验与案例。
曾斓[9](2019)在《深层水泥搅拌桩加固沿海软基试验研究和数值模拟分析》文中研究表明深层水泥搅拌桩加固技术有着适用范围广、周期短、成本低、无污染、快速高效地提高地基承载力和有效地控制地基沉降的优势,但试验研究、理论分析等远远落后于工程实践,很大程度上制约了其技术在沿海工程中的应用。本文在已有的深层水泥搅拌桩复合地基理论的基础上,结合沿海软基加固工程,通过室内模型试验、现场原位试验及数值模拟三个方面对深层水泥搅拌桩复合地基的工程特性及工程应用进行研究。为同类软基工程提供工程实例数据和积累经验,对于深层水泥搅拌桩复合地基加固机理的认识和该技术的推广和应用有着十分重要的意义。本文首先通过水泥土加固体室内配合比试验,分析并揭示了主要影响因素(水泥种类和标号,水泥掺入量,水灰比,龄期,外加剂和水泥土搅拌程度)对水泥土加固体抗压强度和含水率的影响变化规律,以及将深层加固体和浅层加固体工程性能进行了对比,依据试验结果,得到了水泥土加固体不同龄期抗压强度公式,该公式可用于水泥土加固体不同龄期抗压强度变化预测;在室内试验基础上,为了进一步探究水泥掺入量对深层水泥搅拌桩复合地基加固效果的影响,在现场进行了 12组原位桩体试验,通过分析室内水泥土试件和原位桩体强度试验数据,作者提出了针对依托工程地基土情况下的最优水泥掺入量并付诸施工;为现场检验最优水泥掺入量下复合地基加固效果,在现场进行了 12组试验,根据试验结论发现可通过正交试验法进一步全面分析水泥土加固体参数的适用性,基于16组正交试验,给出了最优参数组合的试验方案;在室内试验和现场试验的基础上,论文建立了有限元计算模型,验证其可替代实际桩体,再利用该有限元计算模型对深层水泥搅拌桩复合地基的承载变形特性作了进一步分析,分析出不同桩体模量下,水泥搅拌桩桩体的应力场和位移场的变化情况。
刘汉龙,赵明华[10](2016)在《地基处理研究进展》文中指出随着国家基础设施的大规模建设,近年来我国地基处理技术与应用得到了持续、长足的发展,新技术、新工艺及新方法不断涌现。该文系统简要地回顾了我国地基处理技术与理论研究进展,着重介绍了近五年逐渐发展的具有特色和代表性的地基处理新技术;结合地基处理相关规范的编制情况,探讨了标准化建设历程及地基处理技术与应用的主要发展方向。
二、深层混凝土搅拌法加固软土地基(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、深层混凝土搅拌法加固软土地基(论文提纲范文)
(1)临清高速公路河谷区多层软土强夯加固地基路基沉降分析与预测(论文提纲范文)
致谢 |
中文摘要 |
ABSTRACT |
1 引言 |
1.1 研究背景和意义 |
1.2 国内外研究现状 |
1.2.1 河谷区多层软土地基研究现状 |
1.2.2 软土地基处理方法研究现状 |
1.2.3 软土地基沉降分析与预测研究现状 |
1.3 论文主要研究内容和技术线路 |
1.3.1 主要研究内容 |
1.3.2 研究方法 |
1.3.3 技术线路 |
2 河谷区多层软土地基工程特性分析 |
2.1 工程背景 |
2.1.1 项目概况 |
2.1.2 地层岩性 |
2.1.3 区域地质构造 |
2.1.4 水文地质条件 |
2.2 河谷区多层软土地基工程特性分析 |
2.2.1 地层成因 |
2.2.2 分布规律 |
2.2.3 工程性质 |
2.3 强夯垫层联合堆载静压法加固软土地基机理分析 |
2.3.1 软土地基处理方法 |
2.3.2 强夯垫层法加固机理 |
2.3.3 堆载静压法加固机理 |
2.3.4 强夯垫层联合堆载预压法加固机理 |
2.4 本章小结 |
3 河谷区多层软土强夯加固地基现场监测试验 |
3.1 软基处理段简介 |
3.2 监测测点平面分布 |
3.3 监测测点剖面分布 |
3.4 检测元件的埋设与监测 |
3.4.1 分层沉降监测 |
3.4.2 孔隙水压力监测 |
3.4.3 土压力监测 |
3.4.4 侧向位移监测 |
3.5 强夯垫层法设计参数与工艺 |
4 河谷区多层软土强夯加固地基固结沉降变化特征分析 |
4.1 强夯加固河谷区多层软土地基沉降规律研究 |
4.1.1 软土地基在各阶段沉降形态特征研究 |
4.1.2 不同类型软土地基分层沉降规律研究 |
4.1.3 沉降变化规律分析 |
4.2 强夯加固软土地基孔隙水压力与固结规律研究 |
4.2.1 软土地基各阶段超静孔隙水压力变化特征研究 |
4.2.2 不同类型软土地基固结特征研究 |
4.2.3 孔隙水压力变化与固结特征分析 |
4.3 强夯加固软土地基有效应力与加固效果研究 |
4.3.1 软土地基各阶段土压力变化特征研究 |
4.3.2 不同类型软土地基强夯加固效果分析 |
4.3.3 土压力与强夯加固效果分析 |
4.4 强夯加固软土地基土体侧向位移特征研究 |
4.4.1 软土地基不同深度土层侧向位移特征研究 |
4.4.2 不同类型软土地基侧向位移对比分析 |
4.4.3 侧向位移变化规律分析 |
4.5 本章小结 |
5 河谷区多层软土强夯加固地基路基沉降数值分析 |
5.1 FLAC3D软件综述 |
5.1.1 FLAC3D软件简介 |
5.1.2 流固耦合数值分析方法 |
5.1.3 非线性动力反应数值分析方法 |
5.2 强夯加固软基数值模型的建立与沉降分析 |
5.2.1 模型建立 |
5.2.2 强夯冲击荷载施加 |
5.2.3 强夯加固软基沉降变形特征分析 |
5.2.4 强夯加固软基孔隙水压力变化分析 |
5.2.5 强夯加固软土地基固结特征分析 |
5.2.6 各类型软土地基强夯加固效果对比分析 |
5.3 碎石桩加固软基数值模型建立与沉降分析 |
5.3.1 碎石桩加固相关参数的确定 |
5.3.2 碎石桩加固软基沉降变形特征分析 |
5.3.3 碎石桩加固软基孔隙水压力变化分析 |
5.3.4 碎石桩加固软基应力数值模拟分析 |
5.4 天然软土地基数值模型建立与沉降分析 |
5.4.1 模型建立 |
5.4.2 天然软基数值模型计算结果分析 |
5.5 不同加固方法条件下软土地基沉降与固结特征分析 |
5.6 本章小结 |
6 河谷区多层软土强夯加固地基沉降预测 |
6.1 高速公路路基沉降预测方法 |
6.1.1 分层总和法 |
6.1.2 经验公式法 |
6.1.3 Asaoka法 |
6.2 临清高速河谷区多层软土强夯加固地基路基沉降预测 |
6.2.1 分层总和法的沉降预测与修正 |
6.2.2 不同模型下软基沉降发展特征预测 |
6.2.3 Asaoka法预测 |
6.3 不同模型沉降预测结果对比与分析 |
6.4 本章小结 |
7 结论与展望 |
7.1 结论 |
7.2 展望 |
参考文献 |
索引 |
作者简历 |
学位论文数据集 |
(2)中国路基工程学术研究综述·2021(论文提纲范文)
索 引 |
0 引 言(长沙理工大学张军辉老师、郑健龙院士提供初稿) |
1 地基处理新技术(山东大学崔新壮老师、重庆大学周航老师提供初稿) |
1.1 软土地基处理 |
1.1.1 复合地基处理新技术 |
1.1.2 排水固结地基处理新技术 |
1.2 粉土地基 |
1.3 黄土地基 |
1.4 饱和粉砂地基 |
1.4.1 强夯法地基处理技术新进展 |
1.4.2 高真空击密法地理处理技术 |
1.4.3 振冲法地基处理技术 |
1.4.4 微生物加固饱和粉砂地基新技术 |
1.5 其他地基 |
1.5.1 冻土地基 |
1.5.2 珊瑚礁地基 |
1.6 发展展望 |
2 路堤填料的工程特性(东南大学蔡国军老师、中南大学肖源杰老师、长安大学张莎莎老师提供初稿) |
2.1 特殊土 |
2.1.1 膨胀土 |
2.1.2 黄 土 |
2.1.3 盐渍土 |
2.2 黏土岩 |
2.2.1 黏 土 |
2.2.2 泥 岩 |
(1)粉砂质泥岩 |
(2) 炭质泥岩 |
(3)红层泥岩 |
(4)黏土泥岩 |
2.2.3 炭质页岩 |
2.3 粗粒土 |
2.4 发展展望 |
3 多场耦合作用下路堤结构性能演变规律(长沙理工大学张军辉老师、中科院武汉岩土所卢正老师提供初稿) |
3.1 路堤材料性能 |
3.2 路堤结构性能 |
3.3 发展展望 |
4 路堑边坡稳定性分析(长沙理工大学曾铃老师、重庆大学肖杨老师、长安大学晏长根老师提供初稿) |
4.1 试验研究 |
4.1.1 室内试验研究 |
4.1.2 模型试验研究 |
4.1.3 现场试验研究 |
4.2 理论研究 |
4.2.1 定性分析法 |
4.2.2 定量分析法 |
4.2.3 不确定性分析法 |
4.3 数值模拟方法研究 |
4.3.1 有限元法 |
4.3.2 离散单元法 |
4.3.3 有限差分法 |
4.4 发展展望 |
5 路基防护与支挡(河海大学孔纲强老师、长沙理工大学张锐老师提供初稿) |
5.1 坡面防护 |
5.2 挡土墙 |
5.2.1 传统挡土墙 |
5.2.2 加筋挡土墙 |
5.2.3 土工袋挡土墙 |
5.3 边坡锚固 |
5.3.1 锚杆支护 |
5.3.2 锚索支护 |
5.4 土钉支护 |
5.5 抗滑桩 |
5.6 发展展望 |
策划与实施 |
(3)真空联合堆载预压法及其在澳门新城填海工程的应用(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 研究背景及意义 |
1.2 国内外研究动态 |
1.2.1 国外研究动态 |
1.2.2 国内研究动态 |
1.3 研究方法与内容 |
1.3.1 研究方法 |
1.3.2 研究内容 |
1.4 研究路线 |
第2章 真空联合堆载预压法理论及原理 |
2.1 真空联合堆载预压法简介 |
2.2 真空联合堆载预压法原理 |
2.3 在软基处理中真空联合堆载预压法的应用要点 |
2.3.1 填海工作面要点 |
2.3.2 排水系统施工要点 |
2.3.3 真空预压施工要点 |
2.3.4 堆载预压施工要点 |
2.3.5 卸载施工要点 |
2.4 本章小结 |
第3章 工程实例 |
3.1 工程概况 |
3.1.1 水文条件 |
3.1.2 工程地质 |
3.2 工程真空联合堆载预压法施工控制 |
3.2.1 工程真空联合堆载预压系统 |
3.2.2 工程真空联合堆载预压法施工组织 |
3.3 真空联合堆载预压法的应用难点 |
3.3.1 砂石料用量大、运输强度高 |
3.3.2 地基面积大、设计要求高,需确保加固效果 |
3.3.3 项目施工涉及到两地的管辖 |
3.3.4 施工区涉及机场的限高区域 |
3.4 预压法在澳门新城填海工程的应用工艺 |
3.4.1 打设塑料排水板施工工艺 |
3.4.2 泥浆搅拌桩施工工艺 |
3.4.3 抽真空施工工艺 |
3.4.4 堆载预压施工工艺 |
3.4.5 堤堰施工工艺概况 |
3.5 本章小结 |
第4章 工程真空联合堆载预压法施工监测 |
4.1 监测概述 |
4.2 堤堰回弹模量测试 |
4.3 堤堰载荷板试验 |
4.3.1 沉降位移监测 |
4.3.2 深层测斜监测 |
4.3.3 观测频率 |
4.4 膜下真空度监测 |
4.5 陆域的沉降观测试验 |
4.6 监测预警制度 |
4.7 监测完成后卸载案例 |
4.8 监测结果分析 |
4.8.1 真空度观测 |
4.8.2 地表沉降 |
4.8.3 孔隙水压力 |
4.8.4 深层水平位移 |
4.8.5 分层沉降 |
4.9 真空联合堆载预压处理后的效果 |
4.10 本章小结 |
第5章 结论及展望 |
5.1 研究结论 |
5.2 研究展望 |
参考文献 |
致谢 |
(4)地基处理技术进展(论文提纲范文)
1 地基处理技术回顾 |
1.1 地基处理技术在我国的发展 |
1.2 地基处理方法分类 |
2 地基处理技术新进展 |
2.1 排水固结法进展 |
2.1.1 电渗联合真空预压法 |
2.1.2 真空联合强夯预压法 |
2.1.3 无膜直排式真空预压法 |
2.1.4 劈裂真空预压法 |
2.1.5 增压式真空预压法 |
2.1.6 交替式真空预压法 |
2.1.7 化学药剂真空预压法 |
2.2 复合地基技术进展 |
2.2.1 水泥土搅拌桩桩复合地基 |
2.2.2 整体搅拌复合地基 |
2.2.3 刚性桩复合地基 |
(1) 多元复合地基 |
(2) 排水型刚性桩复合地基 |
(3) 劲性复合桩 |
2.2.4 桩网复合地基 |
2.3 密实法技术进展 |
2.3.1 挤密砂桩法 |
2.3.2 振杆密实法 |
2.3.3 高能级强夯法与孔内强夯法 |
2.3.4 珊瑚砂地基处理 |
2.3.5 无振动挤密桩法 |
2.3.6 高填方工程地基处理 |
2.4 固化剂稳定法 |
2.4.1 钢渣改良土 |
2.4.2 活性MgO碳化软弱土技术 |
2.4.3 电石渣改良土 |
2.4.4 赤泥改良土 |
2.4.5 高聚物注浆技术 |
3 地基处理设计、质量控制与标准化建设 |
3.1 复合地基稳定与沉降分析理论发展 |
3.2 复合地基沉降与固结理论 |
3.3 高填方工程沉降变形规律与计算方法 |
3.4 地基处理施工智能控制技术 |
3.4.1 智能压实技术 |
3.4.2 DCM三轴搅拌桩智能化 |
3.4.3 双向变截面搅拌桩技术智能化 |
3.5 地基处理标准化建设 |
4 结论与展望 |
(5)闭合水泥土围护桩深厚软土复合地基联合堆载预压模型试验研究(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 引言 |
1.2 国内外研究现状 |
1.2.1 真空联合堆载预压研究现状 |
1.2.2 水泥土搅拌桩及水泥土连续墙研究现状 |
1.3 闭合水泥土围护桩复合地基真空联合堆载预压 |
1.4 研究方法及内容 |
1.5 研究技术路线 |
2 软土地基联合处理方法 |
2.1 前言 |
2.2 真空联合堆载预压混凝土芯砂石桩复合地基 |
2.3 水泥搅拌桩联合塑料排水板处理软土地基 |
2.4 混凝土芯水泥搅拌桩复合地基 |
2.5 长短桩组合型复合地基 |
2.6 本章小结 |
3 闭合水泥土围护桩复合地基真空联合堆载预压模型试验 |
3.1 模型试验装置 |
3.1.1 试验研究方法 |
3.1.2 基坑模型尺寸 |
3.1.3 模型试验相似条件 |
3.2 闭合水泥土围护桩复合地基 |
3.2.1 水泥土的加固机理 |
3.2.2 复合地基布置形式设计 |
3.3 真空联合堆载预压系统与测量装置 |
3.4 试验分组方案 |
3.5 试验过程 |
3.5.1 试验流程图 |
3.5.2 基坑回填 |
3.5.3 水泥土围护桩连续墙施工 |
3.5.4 真空联合堆载预压模型试验 |
3.6 本章小结 |
4 模型试验监测数据分析 |
4.1 真空度分析 |
4.1.1 真空度影响因素 |
4.1.2 地基排水固结及土中能量变化规律 |
4.1.3 实测排水板内真空度分析 |
4.2 孔隙水压力变化分析 |
4.3 含水率 |
4.4 地基固结沉降 |
4.5 固结度与最终沉降量计算 |
4.6 地基强度增长规律分析 |
4.7 本章小结 |
5 “围护型”复合地基承载变形特性分析 |
5.1 前言 |
5.2 FLAC3D简介 |
5.2.1 FLAC3D的主要特点 |
5.2.2 FLAC3D的计算原理 |
5.2.3 FLAC3D的求解过程 |
5.3 计算模型的建立 |
5.3.1 基本假定 |
5.3.2 计算模型尺寸与材料参数 |
5.3.3 接触面模拟 |
5.3.4 边界条件和初始条件 |
5.3.5 荷载步的确定 |
5.4 P-S关系曲线及极限承载力 |
5.5 基础变形特性 |
5.5.1 墙体变形 |
5.5.2 土芯变形 |
5.5.3 墙外土体变形 |
5.6 墙体内力分析 |
5.7 “围护型”复合地基的综合应用 |
5.8 本章小节 |
6 “承压型”复合地基极限承载力计算探讨 |
6.1 复合地基静载试验 |
6.2 “承压型”复合地基计算模型及极限承载力 |
6.3 荷载比分担进程 |
6.4 “承压型”复合地基极限承载力验算 |
6.5 本章小结 |
7 结论与展望 |
7.1 结论 |
7.2 展望 |
参考文献 |
攻读硕士学位期间发表论文及科研成果 |
致谢 |
(6)乐海围垦区道路网软土地基处理方法研究(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 研究目的和意义 |
1.2 软土与软土地基处理 |
1.3 国内外研究现状 |
1.4 论文研究内容 |
1.5 技术路线 |
2 软土特征及常用软土地基处理方法 |
2.1 软土特征 |
2.1.1 软土地基的鉴别 |
2.1.2 软土的工程性质 |
2.2 处理目的 |
2.3 常用软土地基处理方法 |
2.3.1 化学加固法 |
2.3.2 减轻荷载法 |
2.3.3 换填法 |
2.3.4 排水固结法 |
2.3.5 注浆加固法 |
2.3.6 高压旋喷桩 |
2.3.7 复合地基法 |
2.3.8 水泥搅拌桩法 |
2.3.9 CFG桩法 |
2.3.10 强夯法及低能量强夯法 |
2.4 本章小结 |
3 温州市乐海围垦区道路网工程项目概况 |
3.1 项目背景及地理位置 |
3.2 项目建设必要性与意义 |
3.2.1 项目建设的必要性 |
3.2.2 工程意义 |
3.3 交通设施现状与规划 |
3.4 沿线环境敏感区分布对项目建设的影响 |
3.5 项目区域内其他运输方式对项目的影响 |
3.6 沿线自然地理概况 |
3.6.1 气象条件 |
3.6.2 水文地质条件 |
3.7 工程地质条件 |
3.8 地基土分析与评价 |
3.9 道路技术标准 |
3.9.1 道路设计标准 |
3.9.2 桥涵设计标准 |
3.10 本章小结 |
4 温州市乐海围垦区道路网项目地基处理方法研究 |
4.1 地基处理方法适用性分析 |
4.2 地基分区域处理方案 |
4.3 吹砂区域地基处理要点 |
4.3.1 水泥土搅拌桩处理要点 |
4.3.2 高压旋喷桩处理要点 |
4.3.3 泡沫混凝土处理要点 |
4.4 主次要区域低能强夯法施工要点 |
4.4.1 低能量强夯施工要点 |
4.4.2 低能量强夯检测验收 |
4.4.3 乐海围垦区道路网低能量强夯注意事项 |
4.5 路基处理施工要求 |
4.5.1 路基填筑与压实度要求 |
4.5.2 雨天施工措施 |
4.5.3 保质保量措施 |
4.6 本章小结 |
5 低能量强夯法数值模拟及现场试验研究 |
5.1 强夯法加固机理及关键指标分析 |
5.1.1 强夯法加固机理 |
5.1.2 强夯法关键指标分析 |
5.2 有限元数值模拟 |
5.2.1 模型建立理论基础 |
5.2.2 有限元模型的建立 |
5.3 夯击能对有效加固深度的影响 |
5.4 低能强夯法现场处理效果 |
5.5 本章小结 |
6 结论与展望 |
6.1 结论 |
6.2 展望 |
致谢 |
参考文献 |
(7)舟山地区市政道路软土路基处理技术(论文提纲范文)
摘要 |
abstract |
第一章 绪论 |
1.1 课题研究背景及意义 |
1.2 研究现状 |
1.2.1 软土成因 |
1.2.2 软土工程性质研究 |
1.2.3 地基处理技术研究 |
1.3 主要研究内容 |
1.4 研究工作的技术路线 |
第二章 舟山地区软土工程特性 |
2.1 自然环境特征 |
2.1.1 地理位置 |
2.1.2 气候条件 |
2.1.3 地形条件 |
2.1.4 区域地质与区域稳定性 |
2.2 舟山地区软土形成环境 |
2.3 软土的工程特性 |
2.3.1 一般力学特性 |
2.3.2 软土的区域划分 |
2.4 本章小结 |
第三章 舟山地区市政道路软基处理问题 |
3.1 舟山地区市政道路状况 |
3.1.1 舟山市政道路概况 |
3.1.2 软土地区市政道路修筑特点 |
3.2 舟山软土地区市政道路病害以及原因 |
3.2.1 舟山地区城市道路路面病害类型及成因 |
3.2.2 舟山地区城市道路路基病害类型及成因 |
3.3 本章小结 |
第四章 舟山地区新建道路软土地基处理措施 |
4.1 新港工业园区(二期)地基处理措施 |
4.1.1 区域内道路分布 |
4.1.2 处治软土地基的方法 |
4.1.3 强夯工程效果评价 |
4.2 东港填海城区二期、三期地基处理措施 |
4.2.1 区域内道路分布 |
4.2.2 软土处治措施 |
4.2.3 处理效果评价 |
4.3 本岛南部、白泉地区地基处理措施 |
4.3.1 道路分布状况 |
4.3.2 软土处治措施 |
4.3.3 处理效果评价 |
4.4 渔山岛(围垦)地基处理措施 |
4.4.1 道路状况 |
4.4.2 处治措施 |
4.5 本章小结 |
第五章 舟山地区道路拼宽常见措施 |
5.1 道路分布概况 |
5.2 城市道路拼宽处治措施 |
5.3 本章小结 |
第六章 结论与建议 |
6.1 研究主要结论 |
6.2 存在的不足与建议 |
参考文献 |
致谢 |
(8)南益高速公路软基处治方案设计与现场试验研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 研究背景 |
1.2 国内外研究现状 |
1.3 主要研究内容和技术路线 |
1.3.1 主要研究内容 |
1.3.2 技术路线 |
第二章 工程概况 |
2.1 地质概况 |
2.1.1 地层岩性 |
2.1.2 水文地质条件 |
2.1.3 特殊性岩土的评价 |
2.2 岩土物理力学性质 |
2.2.1 原位试验 |
2.2.2 室内试验 |
2.3 施工工艺对处治方案选择的影响 |
2.4 本章小结 |
第三章 淤泥质软土地基处理设计 |
3.1 处治基本原则 |
3.2 水泥土搅拌桩方案设计 |
3.2.1 路段概况 |
3.2.2 水泥土搅拌桩复合地基设计 |
3.2.3 水泥搅拌桩施工桩位图 |
3.3 PHC预应力管桩方案设计 |
3.3.1 路段概况 |
3.3.2 PHC预应力管桩复合地基设计 |
3.3.3 PHC预应力管桩施工桩位图 |
3.4 软基处治方案施工工艺 |
3.5 本章小结 |
第四章 现场试验检测 |
4.1 试验目的 |
4.2 试验内容 |
4.2.1 水泥土搅拌桩质量评定检测方法 |
4.2.2 PHC预应力管桩质量评定检测方法 |
4.2.3 静载试验质量检测 |
4.3 本章小结 |
第五章 PHC预应力管桩与水泥土搅拌桩复合地基方案比对 |
5.1 施工工艺 |
5.2 施工质量 |
5.3 经济性 |
5.4 本章小结 |
结论与展望 |
文献引用 |
致谢 |
附录A 攻读学位期间发表论文 |
附录B 攻读学位期间参加的科研项目 |
附录C 现场试验数据记录表 |
附录D 现场试验数据图 |
(9)深层水泥搅拌桩加固沿海软基试验研究和数值模拟分析(论文提纲范文)
摘要 |
ABSTRACT |
第一章 绪论 |
1.1 研究背景和意义 |
1.2 水泥土加固体加固机理和工程性能 |
1.2.1 水泥土加固体加固机理 |
1.2.2 水泥土加固体工程性能 |
1.3 深层水泥搅拌桩复合地基研究现状 |
1.3.1 复合地基概述 |
1.3.2 深层水泥搅拌桩复合地基工程应用现状 |
1.3.3 深层水泥搅拌桩复合地基理论研究现状 |
1.3.4 深层水泥搅拌桩复合地基试验研究现状 |
1.3.5 深层水泥搅拌桩数值模拟研究现状 |
1.4 主要研究内容 |
第二章 水泥土加固体工程性能室内试验研究 |
2.1 试验目的 |
2.2 试验方案 |
2.3 试验实施 |
2.4 试验结果分析 |
2.4.1 水泥土加固体力学性质试验结果 |
2.4.2 水泥土加固体物理性质试验结果 |
2.5 水泥土加固体不同龄期抗压强度的回归分析 |
2.5.1 水泥土加固体(浅层土)抗压强度回归分析 |
2.5.2 水泥土加固体(深层土)抗压强度回归分析 |
2.6 本章小结 |
第三章 深层水泥搅拌桩复合地基原位试验研究 |
3.1 水泥掺入量对桩体强度的影响研究 |
3.2 水泥掺入量对复合地基承载力的影响研究 |
3.3 本章小结 |
第四章 基于正交试验法优化设计参数 |
4.1 深层水泥搅拌桩复合地基加固效果分析 |
4.2 正交试验设计 |
4.2.1 正交试验基本原理 |
4.2.2 正交试验方案设计及结果分析 |
4.3 本章小结 |
第五章 深层水泥搅拌桩复合地基数值模拟分析 |
5.1 有限元分析方法 |
5.1.1 计算模型建立 |
5.1.2 计算模型验证 |
5.1.3 计算模型结果 |
5.2 影响参数对深层水泥搅拌桩复合地基特性影响 |
5.3 本章小结 |
结论与展望 |
参考文献 |
致谢 |
附录A (攻读学位期间发表论文目录) |
附录B (攻读学位期间参加的科研项目) |
(10)地基处理研究进展(论文提纲范文)
引言 |
1 地基处理研究回顾 |
1. 1 地基处理概念与发展历程 |
1. 2 排水固结法技术应用与研究进展 |
1. 2. 1 堆载预压 |
1. 2. 2 真空预压法 |
1. 2. 3 电渗法 |
1. 2. 4 真空联合堆载预压、真空联合电渗法、真空-堆载-电渗联合法等 |
1. 3 桩基复合地基 |
1. 3. 1 桩-网复合地基 |
1. 3. 2 桩-板复合地基 |
1. 3. 3 桩-筏复合地基 |
1. 4 振密、挤密技术应用与研究进展 |
1. 4. 1 强夯法 |
1. 4. 2 振冲密实法 |
1. 4. 3 夯实水泥土桩 |
1. 4. 4 孔内夯扩法 |
1. 5 土工合成材料加筋技术应用与研究进展 |
1. 6 灌入固化物技术应用与研究进展 |
1. 6. 1 深层搅拌法 |
1. 6. 2 高压喷射注浆法 |
1. 6. 3 水泥加固地下连续墙法( TRD) |
1. 6. 4 灌浆法 |
1. 7 托换、纠倾与迁移技术应用与研究进展 |
1. 7. 1 托换技术 |
1. 7. 2 纠倾技术 |
1. 7. 3 迁移技术 |
2 地基处理技术新进展 |
2. 1 排水固结法 |
2. 1. 1 新近吹填土处理技术 |
2. 1. 2 化学电渗法 |
2. 2 灌入固化物法 |
2. 2. 1 高聚物注浆 |
2. 2. 2 微生物注浆 |
2. 3 刚性桩复合地基法 |
2. 3. 1 刚性桩复合地基 |
(1)横截面异形桩 |
( 2) 纵截面异形桩 |
( 3) 组合桩 |
( 4) 浆固碎石桩 |
2. 3. 2 柔性桩复合地基 |
( 1) 加筋碎石桩 |
( 2) 布袋加筋注浆桩 |
( 3) 双向水泥土搅拌桩 |
3 地基处理标准化建设 |
3. 1 较为综合性的地基基础规范的修订与编制 |
3. 1. 1 GB / T 50783—2012《复合地基技术规范》 |
3. 1. 2 JGJ 123—2012《既有建筑地基基础加固技术规范》 |
3. 1. 3 GB / T 50290—2014 《土工合成材料应用技术规范》[64] |
3. 1. 4 其他地基处理规程 |
3. 2以特殊土质为对象的地基处理规范的编制与修订 |
3.2.1 GB/T 51064—2015《吹填土地基处理技术规范》 |
3. 2. 2 岩溶地区建筑地基基础技术相关规范 |
3. 2. 3 GB / T 50942—2014 《盐渍土地区建筑技术规范》 |
3. 2. 4 GB 50112—2013 《膨胀土地区建筑技术规范》 |
( 1) 增加了术语、基本规定、膨胀土自由膨胀率与蒙脱石含量、阳离子交换量的关系等。 |
( 2) 增加了“岩土的工程特性指标”计算表达式。 |
( 3) 增加了坡地上基础埋深的计算公式。 |
3. 3 依据工程条件编制和修订的相关地基处理规范 |
3. 3. 1 公路软基处理相关规范 |
3. 3. 2 铁路地基处理相关规范 |
3. 3. 3 钢制储罐地基处理相关规范 |
3. 3. 4 煤矿采空区建( 构) 筑物地基处理相关规范 |
3. 3. 5 高填方地基处理相关规范 |
3. 3. 6 港口工程地基处理相关规范 |
4 结论与展望 |
四、深层混凝土搅拌法加固软土地基(论文参考文献)
- [1]临清高速公路河谷区多层软土强夯加固地基路基沉降分析与预测[D]. 杨天琪. 北京交通大学, 2021(02)
- [2]中国路基工程学术研究综述·2021[J]. Editorial Department of China Journal of Highway and Transport;. 中国公路学报, 2021(03)
- [3]真空联合堆载预压法及其在澳门新城填海工程的应用[D]. 林智德. 华侨大学, 2020(01)
- [4]地基处理技术进展[J]. 刘松玉,周建,章定文,丁选明,雷华阳. 土木工程学报, 2020(04)
- [5]闭合水泥土围护桩深厚软土复合地基联合堆载预压模型试验研究[D]. 蔡丹. 西华大学, 2020(01)
- [6]乐海围垦区道路网软土地基处理方法研究[D]. 谢卫红. 兰州交通大学, 2019(01)
- [7]舟山地区市政道路软土路基处理技术[D]. 陈思佳. 长安大学, 2019(01)
- [8]南益高速公路软基处治方案设计与现场试验研究[D]. 曾昊. 长沙理工大学, 2019(07)
- [9]深层水泥搅拌桩加固沿海软基试验研究和数值模拟分析[D]. 曾斓. 长沙理工大学, 2019(07)
- [10]地基处理研究进展[J]. 刘汉龙,赵明华. 土木工程学报, 2016(01)