基于BP神经网络的水体叶绿素a浓度预测模型优化研究

基于BP神经网络的水体叶绿素a浓度预测模型优化研究

论文摘要

利用自动监测数据,采用神经网络对水体中叶绿素a含量进行预测,是水体中叶绿素a含量预测的主要手段之一。但受梯度下降法局部搜索的限制,传统BP神经网络模型预测精度和稳定性均存在问题。鉴于此,引入全局搜索的思维进化算法优化BP神经网络权值、阈值,提高叶绿素a预测效率;并采用偏导方法对预测模型输入因子敏感性进行分析,精简模型输入因子。结果表明:在叶绿素a的BP神经网络预测模型中,引入思维进化算法可显著提高网络训练稳定性和精度,预测精度波动范围从[0.364,0.978]提高至[0.917,0.983],平均预测精度从0.950提高到0.968。利用Dimopoulos敏感性分析将模型输入因子从12因子精简为8因子后,平均预测精度从0.968降至0.962,预测精度波动范围从[0.917,0.983]变为[0.921,0.976],预测模型稳定性更好;在输入因子数目均为8条件下,基于Dimopoulos方法敏感性分析结果筛选出的输入因子组合平均预测精度明显高于基于主成分分析法筛选出的输入因子组合。研究可为基于BP神经网络叶绿素a预测模型输入因子优化提供参考,提高模型预测的稳定性。

论文目录

  • 1 叶绿素a预测模型构建
  •   1.1 BP神经网络预测模型
  •   1.2 BP神经网络训练及结果分析
  • 2 神经网络权值、阈值优化
  •   2.1 思维进化算法优化
  •     (1) 映射编码。
  •     (2) 初始种群生成。
  •     (3) 种群内部趋同竞争。
  •     (4) 种群之间异化竞争。
  •     (5) 解析最优个体。
  •   2.2 MEA-BP神经网络训练
  •   2.3 模型预测精度分析
  • 3 因子敏感性分析
  •   3.1 Dimppoulos敏感性分析原理
  •   3.2 基于偏导的敏感性分析讨论
  • 4 模型输入因子精简
  •   4.1 输入因子精简方案设置
  •   4.2 输入因子精简方案选择
  •   4.3 精简方案合理性验证
  • 5 结论
  • 文章来源

    类型: 期刊论文

    作者: 蒋定国,全秀峰,李飞,刘伟

    关键词: 叶绿素,神经网络,思维进化算法,敏感性分析,优化

    来源: 南水北调与水利科技 2019年02期

    年度: 2019

    分类: 工程科技Ⅱ辑,工程科技Ⅰ辑,信息科技

    专业: 环境科学与资源利用,自动化技术

    单位: 三峡大学水利与环境学院

    基金: 国家自然科学基金(51709153)~~

    分类号: X52;TP183

    DOI: 10.13476/j.cnki.nsbdqk.2019.0037

    页码: 81-88

    总页数: 8

    文件大小: 2621K

    下载量: 470

    相关论文文献

    • [1].基于优化神经网络的地质灾害监测预警仿真[J]. 计算机仿真 2019(11)
    • [2].基于进化神经网络的304不锈钢车削加工表面粗糙度预测[J]. 轻工机械 2019(06)
    • [3].时频联合长时循环神经网络[J]. 计算机研究与发展 2019(12)
    • [4].几种典型卷积神经网络的权重分析与研究[J]. 青岛大学学报(自然科学版) 2019(04)
    • [5].基于GA-BP神经网络异纤分拣机检测参数优化[J]. 棉纺织技术 2020(01)
    • [6].基于集成神经网络的织物主观风格预测研究[J]. 纺织科技进展 2020(01)
    • [7].试析神经网络技术在机械工程中的应用及发展[J]. 网络安全技术与应用 2020(02)
    • [8].一种深度小波过程神经网络及在时变信号分类中的应用[J]. 软件 2020(02)
    • [9].不同结构深度神经网络的时间域航空电磁数据成像性能分析[J]. 世界地质 2020(01)
    • [10].基于深度神经网络的航班保障时间预测研究[J]. 系统仿真学报 2020(04)
    • [11].基于生成对抗网络和深度神经网络的武器系统效能评估[J]. 计算机应用与软件 2020(02)
    • [12].基于循环神经网络的双轴打捆机智能换挡策略研究[J]. 安徽工程大学学报 2020(01)
    • [13].基于图神经网络的实体对齐研究综述[J]. 现代计算机 2020(09)
    • [14].基于改进的循环神经网络深度学习跌倒检测算法[J]. 电脑编程技巧与维护 2020(03)
    • [15].神经网络探索物理问题[J]. 物理 2020(03)
    • [16].基于GA-BP神经网络的城市用水量预测[J]. 现代电子技术 2020(08)
    • [17].基于深度神经网络的药物蛋白虚拟筛选[J]. 软件工程 2020(05)
    • [18].基于轻量级神经网络的人群计数模型设计[J]. 无线电工程 2020(06)
    • [19].高效深度神经网络综述[J]. 电信科学 2020(04)
    • [20].含磁场耦合忆阻神经网络放电行为研究[J]. 广西师范大学学报(自然科学版) 2020(03)
    • [21].基于神经网络及特征运算的老年人平衡能力分析[J]. 重庆工商大学学报(自然科学版) 2020(04)
    • [22].神经网络技术在机械工程中的应用及发展探析[J]. 科技创新与应用 2020(18)
    • [23].基于竞争神经网络的变电站巡视周期分类[J]. 科技创新与应用 2020(18)
    • [24].基于双向循环神经网络的语音识别算法[J]. 电脑知识与技术 2020(10)
    • [25].结合相似日与改进神经网络的短期光伏发电预测[J]. 广西电业 2020(04)
    • [26].基于神经网络的流感大数据分析[J]. 中华医学图书情报杂志 2020(03)
    • [27].长短时记忆神经网络在地电场数据处理中的应用[J]. 地球物理学报 2020(08)
    • [28].基于门控循环单元神经网络的公交到站时间预测[J]. 南通大学学报(自然科学版) 2020(02)
    • [29].鼠脑神经网络的同步辐射3D成像研究[J]. 核技术 2020(07)
    • [30].基于长短记忆神经网络的短期光伏发电预测技术研究[J]. 华北电力大学学报(自然科学版) 2020(04)

    标签:;  ;  ;  ;  ;  

    基于BP神经网络的水体叶绿素a浓度预测模型优化研究
    下载Doc文档

    猜你喜欢