基于车载LiDAR点云的杆状地物分类研究

基于车载LiDAR点云的杆状地物分类研究

论文摘要

杆状地物作为常见的公共设施,对其进行自动化精确分类是一项重要工作。文中提出基于车载LiDAR点云的杆状地物自动分类方法:首先,根据杆状地物形态特点,对其进行顶部与杆部分离;再根据杆状地物点云特征提取9种特征向量,构建特征矩阵;然后采用SVM算法,对样本集特征矩阵进行训练并构建分类模型;最后,通过构建的分类模型对测试集进行分类,并与通过先验知识设置阈值的分类算法进行对比实验,实验表明,该算法无需进行多次阈值设定即可对杆状地物进行分类,并且分类精度可达94.7%,证明该算法的正确性与优越性。

论文目录

  • 1 点云特征矩阵构建
  •   1.1 顶部与杆部分离
  •   1.2 特征矩阵提取
  • 2 SVM分类
  •   2.1 SVM分类模型
  •   2.2 技术流程
  • 3 实验分析
  •   3.1 实验区选取
  •   3.2 参数寻优与精度对比
  • 4 结束语
  • 文章来源

    类型: 期刊论文

    作者: 董亚涵,李永强,李鹏鹏,范辉龙

    关键词: 车载,点云,杆状地物

    来源: 测绘工程 2019年06期

    年度: 2019

    分类: 基础科学

    专业: 自然地理学和测绘学

    单位: 河南理工大学测绘与国土信息工程学院

    基金: 河南省基础与前沿技术研究(162300410184),测绘地理信息公益性行业科研专项经费项目(201412020)

    分类号: P237

    DOI: 10.19349/j.cnki.issn1006-7949.2019.06.011

    页码: 58-63

    总页数: 6

    文件大小: 281K

    下载量: 179

    相关论文文献

    • [1].基于卷积神经网络的非等效点云分割方法[J]. 东华大学学报(自然科学版) 2019(06)
    • [2].点云智能研究进展与趋势[J]. 测绘学报 2019(12)
    • [3].基于深度学习的点云分割方法综述[J]. 计算机工程与应用 2020(01)
    • [4].点云数据预处理研究[J]. 现代信息科技 2020(02)
    • [5].基于地基激光雷达点云的植被表型特征测量[J]. 生态学杂志 2020(01)
    • [6].机载点云空洞的修复方法[J]. 北京测绘 2020(02)
    • [7].基于深度学习的零件点云分割算法研究[J]. 机电工程 2020(03)
    • [8].基于深度学习的点云语义分割综述[J]. 激光与光电子学进展 2020(04)
    • [9].基于神经网络的航空行李点云检测方法研究[J]. 电子世界 2020(07)
    • [10].基于二维截面筛选标记的点云简化方法研究[J]. 机电工程 2020(05)
    • [11].三维点云补全方法的现状和发展趋势[J]. 信息记录材料 2020(05)
    • [12].新型激光远程点云装置研究[J]. 机电信息 2020(17)
    • [13].一种简化的输电线路点云电塔自动定位方法[J]. 北京建筑大学学报 2020(03)
    • [14].一种改进的区域增长彩色3D点云分割算法[J]. 国外电子测量技术 2018(11)
    • [15].面向反光工件点云缺陷的点云增强算法[J]. 计算机辅助设计与图形学学报 2019(07)
    • [16].一种基于高度差异的点云数据分类方法[J]. 测绘通报 2018(06)
    • [17].手提激光盘煤仪点云去噪[J]. 激光杂志 2017(05)
    • [18].面向室内场景点云的对象重建[J]. 测绘通报 2017(06)
    • [19].快速点云定向数学模型实际精度分析[J]. 北京测绘 2017(04)
    • [20].基于点云几何约束的仿真安装探讨[J]. 地理空间信息 2017(09)
    • [21].基于自适应切片的点云压缩算法[J]. 工程勘察 2017(09)
    • [22].序列图像三维重构中点云精简算法的研究与改进[J]. 计算机工程与应用 2016(08)
    • [23].地面三维激光扫描点云重建技术研究[J]. 数码世界 2017(08)
    • [24].三维环境下交互式点云对象提取方法[J]. 计算机工程与应用 2019(24)
    • [25].换流站激光点云密度对土石方计算的影响[J]. 电力勘测设计 2020(01)
    • [26].融合个体识别的3D点云语义分割方法研究[J]. 黑龙江工业学院学报(综合版) 2019(12)
    • [27].机载激光点云与摄影测量点云非监督建筑物变化检测[J]. 测绘科学技术学报 2019(05)
    • [28].电力巡检点云分布式异构处理的研究[J]. 湖北电力 2019(05)
    • [29].点云重建的并行算法[J]. 计算机工程与应用 2020(06)
    • [30].基于深度学习的点云匹配[J]. 计算机工程与设计 2020(06)

    标签:;  ;  ;  

    基于车载LiDAR点云的杆状地物分类研究
    下载Doc文档

    猜你喜欢