导读:本文包含了麦谷蛋白亚基论文开题报告文献综述、选题提纲参考文献及外文文献翻译,主要关键词:小麦,蛋白,分子量,标记,分子,春小麦,花药。
麦谷蛋白亚基论文文献综述
刘东军,赵海滨,宋庆杰,宋维富,杨雪峰[1](2019)在《俄罗斯小麦高分子量麦谷蛋白亚基(HMW-GS)分析及评价》一文中研究指出为了解俄罗斯小麦种质资源的品质遗传基础,本研究利用聚丙烯酰胺凝胶电泳(SDS-PAGE)对高分子量麦谷蛋白亚基(HMW-GS)组成进行研究。结果表明:俄罗斯小麦在Glu-A1位点具有1、2~*和Null叁种等位变异,Glu-B1位点具有6+8,7+8,7+9,13+16,14+15和17+18六种等位变异,Glu-D1位点具有2+12和5+10两种等位变异。俄罗斯小麦麦谷蛋白亚基组成共有20种,其中,以2~*、7+9、2+12,2~*、7+9、5+10和1、7+9、5+10为主,占比分别为28.65%、27.49%和14.63%,其他HWM-GS组成占比低于3.51%。根据Payne评分标准对俄罗斯小麦品质进行评价,评分范围5~10,评分为10的HWM-GS组成有6个,分别为1、7+8、5+10,2~*、7+8、5+10,1、17+18、5+10,2~*、17+18、5+10,1、13+16、5+10和1、14+15、5+10,分别占比3.51%、2.34%、2.34%、1.75%、0.58%和0.58%。这些数据可以看出俄罗斯春小麦优质亚基变异较为丰富,而且,优质麦谷蛋白亚基13+16、14+15、17+18在东北春小麦中罕见,为改良当地小麦品质提供了重要的种质资源。(本文来源于《黑龙江农业科学》期刊2019年11期)
李春燕,张翠绵,柴建芳,秘彩莉,马秀英[2](2019)在《分离小麦麦谷蛋白亚基的几个关键因素研究》一文中研究指出小麦高分子量、低分子量麦谷蛋白亚基组成是影响小麦加工品质的重要因素,为了经济快速鉴定小麦高低分子量麦谷蛋白亚基组成,需要不断对提取和分离这些蛋白的方法进行优化。在Singh等提出的提取分离小麦高低分子量麦谷蛋白亚基方法的基础上,对其中涉及的单体蛋白去除、麦谷蛋白还原和烷化过程中使用的异丙醇浓度、烷化剂浓度以及烷化过程能否简化几个关键因素进行了深入研究。结果表明:在麦谷蛋白还原时,在10%~50%的异丙醇浓度范围内,不同浓度的异丙醇对高分子量麦谷蛋白亚基的提取效果没有差别,而低分子量麦谷蛋白亚基在用低浓度异丙醇提取时效果较差,随异丙醇浓度提高,提取效果逐渐提高,异丙醇浓度提高到30%时,提取效果达到最高,异丙醇浓度继续提高到50%,提取效果不再提高;使用30%和50%的异丙醇,去除单体蛋白的效果相同;把烷化剂直接加到样品缓冲液中进行烷化,不同浓度(0. 6%~1. 4%)的烷化剂处理麦谷蛋白亚基的烷化效果相同,但烷化剂浓度为1. 4%时电泳背景较重。优化后的方法为:在单体蛋白去除和麦谷蛋白还原时把异丙醇浓度由原来的50%降为30%,去掉单独的烷化步骤,把0. 6%的烷化剂直接加到样品缓冲液中进行烷化。优化后的方法不但减少了试剂用量,简化了提取步骤,还提高了电泳条带强度。(本文来源于《华北农学报》期刊2019年04期)
王炜,陈琛,叶春雷,杨随庄,欧巧明[3](2019)在《花药培养与麦谷蛋白亚基分子标记结合选育小麦新品种的研究》一文中研究指出为快速获得携带麦谷蛋白优质亚基基因的小麦新品种,提高小麦的品质育种技术水平,利用引进的矮败材料与和尚头、甘春20号、临麦34号等10个不同品种(系)杂交,并对杂交后代进行了花药培养,获得了115份花培株系;利用PCR对花培后代株系及杂交亲本进行了优质贮藏蛋白亚基分子标记检测,3个HMW-GS为 Bx7、 Bx14、 Dx5,3个LMW-GS为 Glu-A3ac、 Glu-A3d、 Glu-B3b。结果表明,在115份花培材料中, Bx7的出现频率最高,为94.78%,其余依次为 Glu-A3ac、 Dx5、 Bx14、 Glu-A3d和 Glu-B3b;获得了44份聚合4个亚基以上的材料;结合农艺性状鉴定,筛选出了3份综合性状优异的小麦新品系AB158、AB167和AB332。本研究将花培育种技术、分子标记辅助选择技术及矮败小麦育种技术进行了有机结合,其结果可为提升小麦品质育种技术水平提供参考。(本文来源于《麦类作物学报》期刊2019年03期)
陈琛,王炜,袁俊秀,陈军,牟丽明[4](2018)在《甘肃旱地春小麦及部分重要骨干亲本麦谷蛋白亚基组成分析》一文中研究指出为明确甘肃主栽旱地春小麦品种资源的优质麦谷蛋白亚基组成及分布情况,选取高分子质量麦谷蛋白亚基Ax1/2*、Dx5、Bx7、By8、Bx14和低分子质量麦谷蛋白亚基Glu-A3d、Glu-B3b,采用STS分子标记的方法,对82份甘肃近年来育成的旱地春小麦品种(系)及部分重要骨干亲本进行检测。结果表明,82份供试材料中优质HMW-GS以Ax1/2*、5+10和7+8为主,分布频率分别为57.3%、31.7%和72.0%,14+15的频率为4.9%,在2份材料中检测到稀有亚基By8,频率为2.4%。LMW-GS中Glu-A3d、Glu-B3b频率分别为80.5%和42.7%。Glu-1 3个位点具优质亚基的小麦品种(系)共11个,Glu-3 2个位点具优质亚基的小麦品种(系)共31份。8份材料在5个位点都具有优质亚基。研究结果为改良甘肃旱地春小麦面筋质量、准确筛选优质种质资源和加快育种进程提供了重要依据。(本文来源于《西北农业学报》期刊2018年11期)
丁明亮,赵佳佳,周国雁,李宏生,崔永祯[5](2018)在《云南省普通小麦育成品种(系)高分子量麦谷蛋白亚基组成分析》一文中研究指出为深入了解云南省建国以来普通小麦育成品种(系)的高分子量麦谷蛋白亚基(HMW-GS)组成情况,利用SDS-PAGE电泳技术对152份云南省1950s以来普通小麦育成品种(系)HMW-GS组成和变异进行了分析。结果表明:(1)云南省普通小麦在Glu-A1位点具有N(56.58%)和1(43.42%)2种亚基类型,在Glu-B1位点具有7+8(42.11%)、7+9(34.87%)、6+8(0.66%)、14+15(7.24%)、17+18(13.16%)和13+16(1.97%)6种亚基类型,在Glu-D1位点具有2+10(5.26%)、2+12(54.61%)、5+10(24.34%)和5+12(15.79%)4种亚基类型;(2)云南省普通小麦HMW-GS组合类型比较丰富,共出现27种亚基组合类型,其中"N,7+8,2+12"、"N,7+9,2+12"、"1,7+8,2+12"与"1,7+9,5+10"较多,出现频率分别为20.39%、9.87%、7.89%和7.89%;(3)云南省各个时期育成品种(系)的HMW-GS品质评分基本维持在4.50左右,1990s以后育成的品种(系)中优质亚基5+10出现的频率随普通小麦育成时期的推移而逐渐增加。由此可见,云南省普通小麦的HMW-GS在Glu-A1、Glu-B1、Glu-D1位点上表现出丰富的多态性,共有12种HMWGS等位变异,包括13+16、2+10和5+12叁种稀有亚基类型和27种亚基组合类型;对加工品质具有正效应的优质亚基17+18和5+10频率较小,缺乏优质亚基2*。因此,在云南省普通小麦的品质改良中应加强优质亚基2*、17+18和5+10引入及合理应用。(本文来源于《麦类作物学报》期刊2018年11期)
高振贤,李亚青,田国英,单子龙,张朋伟[6](2018)在《小麦高分子量麦谷蛋白亚基组成和检测研究进展》一文中研究指出小麦高分子量麦谷蛋白亚基(HMW-GS)组成与面包品质密切相关。为了从目前经常使用的一些HMW-GS检测方法中选择满足试验要求的最佳方法,笔者总结了HMW-GS组成,以及利用十二烷基硫酸钠聚丙烯酰胺凝胶电泳(SDS-PAGE),反相高效液相色谱(RP-HPLC)和聚合酶链式反应(PCR)3种方法检测小麦HMW-GS组成的研究进展,讨论了3种方法检测小麦HMW-GS组成的优缺点,指出SDSPAGE和PCR方法适合常规育种材料或栽培小麦品种中HMW-GS的检测,双向电泳或RP-HPLC方法适合检测含有远缘遗传物质的小麦或近缘种属中HMW-GS的检测。最后展望了SDS-PAGE和PCR方法在小麦分子标记辅助育种中应用前景。(本文来源于《中国农学通报》期刊2018年16期)
胡鑫[7](2018)在《硬粒小麦主要农艺性状的关联分析及低分子麦谷蛋白亚基的组成鉴定》一文中研究指出硬粒小麦(Triticum durum,AABB,2n=4x=28)是四倍体栽培小麦,其播种面积约占世界小麦总面积的10%,是世界重要的粮食作物之一。硬粒小麦是由野生二粒小麦(Triticum dicoccoides L.,AABB,2n=4x=28)驯化而来,在其起源和驯化的过程中经历了长期复杂的环境演变条件,在很多性状上具有丰富的变异,同时具有良好的环境适应性,是普通小麦次级基因源库。因此,对硬粒小麦进行遗传评价及主要农艺性状的研究,对于发掘优异的种质资源,用于硬粒小麦及普通小麦的遗传改良具有重要的意义。本文首先对来自世界各地的150份硬粒小麦材料的10个主要的农艺性状进行了4年3个重复的表型鉴定;其次利用基于EST序列开发的1366个SNP标记对150份硬粒小麦材料的遗传多样性,群体结构研究以及连锁不平衡(LD)进行了研究;并利用1366个SNP标记基于混合线性模型(MLM)对其10个主要的农艺性状进行了关联分析;另外,利用MALDI-TOF-MS技术,对150份硬粒小麦材料的低分子量麦谷蛋白亚基组成进行了鉴定。主要结果如下:1.硬粒小麦主要农艺性状的表型鉴定:硬粒小麦10个主要的农艺性状间都存在丰富的变异,都呈连续性分布,表现为典型的数量性状。大部分性状间存在显着的相关关系。广义遗传率的结果也表明考察的所有性状都有较高的遗传率(H2>80%)。因此这些农艺性状的表型数据可以用于后续研究。另外鉴定了一些农艺性状优异的材料可进一步验证加以利用。2.硬粒小麦遗传多样性研究:利用1366个单核甘酸多态性(SNP)标记对硬粒小麦进行了遗传多样性研究,硬粒小麦表现出较高的遗传多样性,平均Nei’s遗传多样性和PIC值分别是0.2395和0.1950。B基因组相对A基因组具有更高的遗传多样性。不同生态地理区域的硬粒小麦群体的遗传多样性也表现出较大差异。3.硬粒小麦群体结构分析:群体结构分析表明,供试硬粒小麦材料主要被分为两个明显类群。硬粒小麦不同类群并没有表现基于国家和地区上一致规律性,而部分生态地理区域的材料有一定的关联,不同时间段的材料的聚类也表现出一定的一致性。4.硬粒小麦连锁不平衡分析:硬粒小麦基因组中表现出较高的LD水平,不同的基因组和染色体的平均LD程度不同,A基因组的LD程度总体上要高于B基因组。极显着的LD的成对位点的比率范围从1A的2.4%到2B的7.4%(R~2>0.1,p<0.001),14条染色体上平均R~2值变化范围从1B的0.043到4A的0.113。结合EST标记的最新物理位置,在染色体和基因组水平,对其LD衰减水平进行评估,不同的染色体内LD衰减距离各异,总体上A基因组衰减距离大于B基因组。5.硬粒小麦10个主要农艺性状的关联分析:在四年数据中,基于混合线性模型(MLM)对10个主要农艺性状进行了关联分析,共检测到165个显着关联结果,不同性状的关联标记的数目从1个到54个不等,这些标记解释了5.0%-26.1%的表型变异。单个性状可能与多个标记相关联,同时单个标记也可能与多个性状相关联。一些关联标记与已报道的数量性状位点(QTL)研究相一致。共有7个显着的关联结果在四年的关联分析中被重复检测到(主穗长(LMS)和株高(PH)分别有4和3个),同时2个关联结果在3年数据中被重复检测到,11个关联结果在两年数据中都有检测到,这些重复性的关联结果多是显着且可靠的。通过对关联标记对应的EST序列进行同源性序列比对,共确定了多个可能控制相关农艺性状的主效候选基因。同时我们在2A、5A、6A、7A、1B和6B染色体特殊区域发现了一些与农艺性状显着关联的标记聚集形成的QTL簇。6.硬粒小麦低分子量麦谷蛋白亚基组成鉴定:在Glu-A3和Glu-B3两个位点,一共鉴定出了12个低分子量麦谷蛋白亚基基因的等位变异,其中有2个先前没有报道的新的变异。Glu-A3和Glu-B3位点各有5个先前报道过的亚基被鉴定出来,其中Glu-A3位点Glu-A3e、Glu-A3a/c、Glu-A3d、Glu-A3f和Glu-A3b分别占43.0%、16.1%、10.1%、12.8%和7.4%;Glu-B3位点Glu-B3d,Glu-B3b和Glu-B3c分别占60.4%、6.0%和6.0%,Glu-B3h的材料有4个,Glu-B3f也仅在一个材料中被鉴定出来。另外,在Glu-A3和Glu-B3位点各有一个新的蛋白亚基基因型被鉴定出来,分别编码的蛋白亚基分子量在40500 Da和41260 Da左右。(本文来源于《华中农业大学》期刊2018-06-01)
高振贤,曹巧,何明琦,田国英,王飞[8](2018)在《小麦低分子量麦谷蛋白亚基功能标记研究进展》一文中研究指出小麦是我国主要的粮食作物之一,籽粒中的低分子量麦谷蛋白对于小麦面包的加工品质具有重要的作用。近年来,利用分子标记技术检测小麦低分子量麦谷蛋白亚基(low molecular weight glutenin subunit,LMW-GS)的类型和组成已成为小麦品质改良的研究热点之一。主要综述了小麦低分子量麦谷蛋白亚基基因和蛋白质的结构特征、分类以及功能标记的研究进展,讨论了开发利用小麦Glu-A3、Glu-B3、Glu-D3位点LMW-GS功能标记的意义及存在的问题,并强调了LMW-GS分子标记检测技术的革新及亚基类型的完善对小麦品质改良的重要性,以期加速LMW-GS功能标记在优质小麦育种工作中的应用进程。(本文来源于《生物技术进展》期刊2018年03期)
王坤杨[9](2018)在《高大山羊草优质麦谷蛋白亚基向小麦基因组中的易位转移和面包品质分析》一文中研究指出小麦(Triticum aestivum L.)是世界上叁大最重要的粮食作物之一,其面团具有独特的粘性和弹性,可以制作成面包、面条、馒头等各种食品。高分子量麦谷蛋白亚基(High molecular weight glutenin subnit,HMW-GS)是小麦籽粒贮藏蛋白的重要组成成分,影响着面团的弹性和加工品质。高大山羊草(Aegilops longissima L.)是小麦重要的近缘二倍体物种,含有大量的优良基因,可用于小麦遗传改良,提高小麦加工品质以及对生物胁迫和非生物胁迫的抗性。本研究拟通过体细胞无性系变异技术诱导小麦1B染色体与高大山羊草1S~l染色体间发生整臂易位,同时开发小麦1B染色体和高大山羊草1S~l染色体长、短臂特异分子标记,利用分子标记对体细胞无性系变异后代材料进行筛选,创制小麦-高大山羊草1S~lL?1BS纯合易位系(20Ⅱ~W+1Ⅱ~(1SL+1BS))和1S~lS?1BL纯合易位系(20Ⅱ~W+1Ⅱ~(1SS+1BL)),并进行初步的品质性状分析。主要研究结果如下:1、以小麦-高大山羊草1S~l(1B)代换系CB-SLB(2n=42,20Ⅱ~W+1Ⅱ~(1S))为父本与澳大利亚小麦品种Westonia为母本进行杂交,对授粉15 d的F_1杂种幼胚进行组织培养,对产生的愈伤组织进行2次继代培养,以诱导小麦1B染色体与高大山羊草1S~l染色体间发生整臂易位。然后对愈伤组织进行分化培养,共获得了755株再生植株,植株再生率为181.0%。2、从高大山羊草幼苗叶片提取RNA,建立高大山羊草cDNA文库,通过Illumina HiSeq转录组测序,得到了54299378条Raw Reads和Clean Reads和8.14G的Clean bases。对Clean Reads进行转录本拼接之后,得到了102395条unigenes,其中unigenes的N50和N90分别为649bp和236bp。3、利用高大山羊草转录组序列和生物信息技术,以小麦-高大山羊草1S~l-7S~l全套附加系DA1S~l#3、DA2S~l#3、DA3S~l#2、DA4S~l#3、DA5S~l#3、DA6S~l#3、DA7S~l#3为材料,共开发了134个高大山羊草1S~l-7S~l不同染色体臂特异的分子标记,其中,1S~lL、1S~lS、2S~lL、2S~lS、3S~lL、3S~lS、4S~lL、4S~lS、5S~lL、5S~lS、6S~lL、6S~lS、7S~lL、7S~lS染色体上各有11、10、17、5、4、8、8、7、29、8、11、4、7、5个标记。4、利用1S~lL、1S~lS、1BL、1BS特异分子标记,结合原位杂交技术,筛选CB-SLB与Westona无性系变异群体。在986株TC_2群体中获得了3个小麦-高大山羊草1S~lS?1BL纯合易位系(20Ⅱ~W+1Ⅱ~(1SS+1BL)),在831株TC_3群体中获得了1个小麦-高大山羊草1S~lL?1BS纯合易位系(20Ⅱ~W+1Ⅱ~(1SL+1BS)),在1140株TC_4群体中获得了1个小麦-高大山羊草1S~lL?1BS纯合易位系(20Ⅱ~W+1Ⅱ~(1SL+1BS)),获得效率分别为0.3%、0.12%和0.088%。5、利用SDS-PAGE技术对小麦-高大山羊草1S~lL?1BS易位系中HMW-GS组成情况进行了鉴定,发现1S~lL染色体上的1Sx2.3基因和1Sy16基因均正常表达。进一步对小麦-高大山羊草1S~l/1B两类易位系进行了初步的面包品质分析,发现1S~lL?1BS易位系材料的面团强度和面筋强度比对照材料的要弱,而1S~lS?1BL易位系材料的面团强度和面筋强度要强于对照材料。另外,发现易位系材料在北京种植其蛋白含量高于在云南种植的蛋白质含量。(本文来源于《中国农业科学院》期刊2018-05-01)
王卫东,高翔,赵丹阳[10](2018)在《高分子量麦谷蛋白亚基HPCE高效分离及图谱鉴定》一文中研究指出高分子量麦谷蛋白亚基(HMW-GS)是决定小麦加工品质的重要因素。高效毛细管电泳技术(HPCE)以其用样少、速度快、精确度高等特点被越来越多地应用到分离鉴定中来。目前小麦HMW-GS的HPCE研究尚处于起步阶段,对标准鉴定图谱的研究甚少,且已有分离体系在连续多次试验中的分离速度及分辨率仍有提升空间。本研究通过SDS-PAGE结合分子标记的方法鉴定了不同小麦品种的HMW-GS,以"中国春"小麦为标样确立了HPCE高效分离体系,体系条件为75 mmol L–1 IDA+0.05%HPMC+15%ACN,pH 2.5,电泳参数为毛细管内径25μm,PDA检测波长200nm,分离电压20 k V,运行温度30?C。通过混合进样方式对不同类型亚基进行HPCE分析,建立了18个亚基的标准图谱,亚基迁移顺序为1Dy12→1Dy10→1By9→1By8→1By18→1By16→1By20→1Bx17→1Bx20→1Bx13→1Bx6→1Bx7→1Ax2*→1Ax1→1Dx5→1Dx4→1Dx3→1Dx2,标准出峰时间依次为9.39、9.69、10.30、11.70、11.89、12.09、12.22、12.36、12.62、12.83、13.08、13.18、13.50、13.73、14.04、14.24、14.46和14.73 min,RSD<0.2%。以1Bx17为分界线,9.39 min到12.36 min为y型亚基区域,12.36 min到14.76 min为x型亚基区域。结合亚基迁移顺序、标准出峰时间及图谱特点可对小麦相关HMW-GS进行HPCE快速鉴定。本研究获得的分离体系及鉴定图谱可用于小麦HMW-GS定性分析和种质资源筛选。(本文来源于《作物学报》期刊2018年07期)
麦谷蛋白亚基论文开题报告
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
小麦高分子量、低分子量麦谷蛋白亚基组成是影响小麦加工品质的重要因素,为了经济快速鉴定小麦高低分子量麦谷蛋白亚基组成,需要不断对提取和分离这些蛋白的方法进行优化。在Singh等提出的提取分离小麦高低分子量麦谷蛋白亚基方法的基础上,对其中涉及的单体蛋白去除、麦谷蛋白还原和烷化过程中使用的异丙醇浓度、烷化剂浓度以及烷化过程能否简化几个关键因素进行了深入研究。结果表明:在麦谷蛋白还原时,在10%~50%的异丙醇浓度范围内,不同浓度的异丙醇对高分子量麦谷蛋白亚基的提取效果没有差别,而低分子量麦谷蛋白亚基在用低浓度异丙醇提取时效果较差,随异丙醇浓度提高,提取效果逐渐提高,异丙醇浓度提高到30%时,提取效果达到最高,异丙醇浓度继续提高到50%,提取效果不再提高;使用30%和50%的异丙醇,去除单体蛋白的效果相同;把烷化剂直接加到样品缓冲液中进行烷化,不同浓度(0. 6%~1. 4%)的烷化剂处理麦谷蛋白亚基的烷化效果相同,但烷化剂浓度为1. 4%时电泳背景较重。优化后的方法为:在单体蛋白去除和麦谷蛋白还原时把异丙醇浓度由原来的50%降为30%,去掉单独的烷化步骤,把0. 6%的烷化剂直接加到样品缓冲液中进行烷化。优化后的方法不但减少了试剂用量,简化了提取步骤,还提高了电泳条带强度。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
麦谷蛋白亚基论文参考文献
[1].刘东军,赵海滨,宋庆杰,宋维富,杨雪峰.俄罗斯小麦高分子量麦谷蛋白亚基(HMW-GS)分析及评价[J].黑龙江农业科学.2019
[2].李春燕,张翠绵,柴建芳,秘彩莉,马秀英.分离小麦麦谷蛋白亚基的几个关键因素研究[J].华北农学报.2019
[3].王炜,陈琛,叶春雷,杨随庄,欧巧明.花药培养与麦谷蛋白亚基分子标记结合选育小麦新品种的研究[J].麦类作物学报.2019
[4].陈琛,王炜,袁俊秀,陈军,牟丽明.甘肃旱地春小麦及部分重要骨干亲本麦谷蛋白亚基组成分析[J].西北农业学报.2018
[5].丁明亮,赵佳佳,周国雁,李宏生,崔永祯.云南省普通小麦育成品种(系)高分子量麦谷蛋白亚基组成分析[J].麦类作物学报.2018
[6].高振贤,李亚青,田国英,单子龙,张朋伟.小麦高分子量麦谷蛋白亚基组成和检测研究进展[J].中国农学通报.2018
[7].胡鑫.硬粒小麦主要农艺性状的关联分析及低分子麦谷蛋白亚基的组成鉴定[D].华中农业大学.2018
[8].高振贤,曹巧,何明琦,田国英,王飞.小麦低分子量麦谷蛋白亚基功能标记研究进展[J].生物技术进展.2018
[9].王坤杨.高大山羊草优质麦谷蛋白亚基向小麦基因组中的易位转移和面包品质分析[D].中国农业科学院.2018
[10].王卫东,高翔,赵丹阳.高分子量麦谷蛋白亚基HPCE高效分离及图谱鉴定[J].作物学报.2018
论文知识图
![小麦高分子量麦谷蛋白亚基SDS-PA...](http://image.cnki.net/GetImage.ashx?id=666452&suffix=.jpg)
![Verry加倍单倍体高分子量麦谷蛋白](http://image.cnki.net/GetImage.ashx?id=ZWYC2010060040002&suffix=.jpg)
![发芽与未发芽小麦籽粒的高分子量麦谷](http://image.cnki.net/GetImage.ashx?id=2434556&suffix=.jpg)
![1 供试品种小麦籽粒麦谷蛋白亚基...](http://image.cnki.net/GetImage.ashx?id=XBZW2010100230001&suffix=.jpg)
![小麦高分子量麦谷蛋白亚基的SDS-...](http://image.cnki.net/GetImage.ashx?id=2343022&suffix=.jpg)
![Alondra加倍单倍体高分子量麦谷蛋](http://image.cnki.net/GetImage.ashx?id=ZWYC2010060040001&suffix=.jpg)