论文摘要
为了建立适用于环境系统的结构简洁、形式统一、程序规范、应用普适的神经网络和投影寻踪回归预测模型,针对传统的神经网络和投影寻踪回归用于多因子、大样本预测建模,存在模型结构复杂、学习效率低的局限,提出设置环境系统预测量及其影响因子参照值和规范变换式的原则和方法,使规范变换后的影响因子皆"等效"于同一个规范影响因子,从而将多因子的的预测建模简化为等效规范因子的预测建模,使模型结构得到极大地简化,提高了学习效率;此外,为了提高预测模型的预测精度,还提出了对预测样本的模型输出值的误差修正公式.在对环境系统的预测量及其影响因子进行规范变换的基础上,将m个规范影响因子的每个建模样本组成m个"等效"训练样本,应用免疫进化算法优化模型参数,分别建立适用于环境系统的2个或3个规范影响因子的前向神经网络和投影寻踪回归两类预测模型;并依据误差理论,对误差修正公式修正后的模型预测精度的提高进行了严格的数学论证.将基于规范变换与相似样本误差修正相结合的两类预测模型,用于某市5个点位的SO2浓度预测,并与6种传统预测模型和方法的预测结果进行了比较.结果表明:对同一个预测样本,同类模型的两种不同结构的的预测值及其相对误差都几乎完全相同或彼此相差甚小;此外,两种不同结构的两类预测模型用于5个样本预测,其相对误差绝对值的平均值分别为2.59%、2.67%;2.18%、2.62%,均远小于传统BP神经网络模型的25.72%、传统PPR模型的14.20%、传统SVR模型的22.13%、模糊识别模型的21.57%、组合算子模型的18.36%和多元回归模型的25.31%;而两类模型预测的最大的相对误差绝对值分别为4.11%和3.57%,更加远远小于传统的6种预测模型的37.18%、56.07%、27.40%、32.14%、38.38%和60.26%.实例分析结果证实了误差修正公式对提高模型预测精度具有切实可行性.基于规范变换与误差修正相结合的前向神经网络和投影寻踪回归两类预测模型不仅避免了"维数灾难",提高了学习效率和模型的预测精确度,而且具有简洁、普适、规范、统一和稳定的特点,对其他预测建模也有借鉴作用.
论文目录
文章来源
类型: 期刊论文
作者: 李祚泳,汪嘉杨,徐源蔚
关键词: 环境系统,规范变换,预测模型,前向神经网络,投影寻踪回归
来源: 环境科学学报 2019年06期
年度: 2019
分类: 工程科技Ⅰ辑
专业: 环境科学与资源利用
单位: 成都信息工程大学资源环境学院
基金: 国家自然科学基金(No.51679155)
分类号: X32
DOI: 10.13671/j.hjkxxb.2018.0331
页码: 2053-2070
总页数: 18
文件大小: 315K
下载量: 115