钢轨打磨技术现状和发展趋势

钢轨打磨技术现状和发展趋势

东莞市轨道交通有限公司523378

摘要:当前,利用钢轨打磨技术进行线路维护已成为国内外轨道养护的共识。随着我国铁路运营里程的不断增加,有限的“天窗时间”和打磨作业的特殊性给线路维护带来巨大挑战,同时也推动了钢轨打磨技术研究和应用的快速跟进。本文在总结钢轨病害产生及预测模型的基础上,介绍了打磨机理、打磨策略、打磨方式、打磨模式、打磨周期和质量评价等钢轨打磨相关方面的研究和应用现状,通过分析钢轨打磨技术特点及铁路维护需求,研究钢轨打磨技术的发展趋势。

关键词:钢轨打磨;打磨方式;质量评价

1钢轨病害的产生及预测

列车在轨道上运行时,轮轨之间的摩擦会使钢轨表面材料沿纵向发生塑性形变。此外,由于车轮踏面具有一定锥度,受列车运行动态特性和随机因素的影响,列车向前运动的同时会发生左右横移,产生蛇形运动,致使钢轨表面材料沿横向亦产生形变及磨耗。再者,轮轨之间的循环接触会使钢轨表面产生疲劳层,当钢轨材料的塑性形变和疲劳累积到限值后,其表面出现波浪型磨耗(简称波磨)、裂纹和侧面肥边,乃至剥落等病害,钢轨表面的典型病害及其产生原因如图1所示。

除以上原因导致钢轨表面产生规律性病害外,线路铺设状况、运营气候条件、轨道曲线半径、轮轨润滑状态等因素均影响着钢轨随机产生的病害。

若钢轨表面病害得不到预防或及时清除,恶化的轮轨关系会促使病害继续加重并扩展,造成轮轨关系和钢轨病害之间的恶性循环,促使列车的运行噪声加剧,严重影响其运行安全性和平稳性。钢轨打磨的主要目的是清除钢轨病害,并修复钢轨廓型以改善轮轨关系,使轮轨间的相互作用回归到轮轨接触的初始状态。掌握钢轨的规律性病害及其潜在特征影响下随机病害的产生和发展规律,量化钢轨病害萌生、扩展的循环周期,才可为钢轨打磨作业规划和实施提供原始依据,而研究轮轨接触疲劳及钢轨磨耗的预测模型是解决上述问题的有效途径。

基于钢轨磨损、疲劳和润滑之间的相互作用机理,并考虑它们与钢轨打磨的相互关系,可对钢轨接触疲劳和磨损进行预测。钢轨病害的预测方法主要分为2类:一是通过列车车轮碾压钢轨的次数研究钢轨疲劳裂纹的形成机理,预测轨顶裂纹萌生和扩展的速度,分析钢轨的规律性病害,此类方法适用于路况简单的线路,如高速铁路、直线线路,可指导钢轨预防性打磨的实施;二是通过分析列车运行在路况复杂线路(如道岔和曲线)上时钢轨受力和轮轨接触情况,获取钢轨不对称磨耗与线路特征的关系,此类方法适用于研究曲线路段的钢轨磨耗,可指导不对称打磨模式的制定。通过综合讨论接触疲劳和磨耗,结合钢轨打磨和润滑对钢轨寿命的改善作用,从而制定出合理的线路维护计划。现存的钢轨病害预测方法多用于预测规律性病害,不能预测肥边、剥落等病害。

2钢轨打磨技术

2.1钢轨打磨类型

受自然因素和钢轨材料影响,钢轨在使用中不可避免会出现疲劳和磨损,长时间的疲劳和磨损最终将会使钢轨失效,钢轨的打磨可对钢轨进行有效维护,控制钢轨接触性疲劳和钢轨磨耗,降低铁路的运营成本。钢轨打磨技术主要有预防性和修理性打磨,其中预防性打磨主要针对的是状态较好的钢轨,是一次快速的打磨,对包括微裂纹的薄层可完全清除,提高钢轨顶面的平顺度,改善轮轨关系,延长钢轨的使用寿命,在开通运营前一般打磨3-4遍;修理性打磨主要针对的是状态较差的钢轨,打磨速度慢,需要反复进行,只能去除钢轨表面的波磨合伤损,深度裂纹不能去除,旨在恢复钢轨的标准断面,延长使用寿命,一般需要打磨5-10遍,此外打磨类型还有预备性打磨、病害型打磨、矫正型打磨等。根据打磨区域不同,打磨技术还可分为表面和外形打磨;根据打磨的目的不同,可分为预防性、保养性和校正性打磨三种。虽然打磨技术分为不同类型,各自的作用不同,但最终目的均是为了降低铁路运行成本,提高钢轨的使用周期,保障列车的行车安全与平稳。

图1钢轨表面典型病害及产生原因

2.2钢轨打磨方式

不同的打磨技术其打磨方式也不同,例如预防性打磨要在缺陷形成之前对钢轨进行经常性的轻快打磨,根据线路使用情况将轨头打磨成不同形状,打磨速度一般保持在5-10km/h,深度在0.3mm左右,钢轨打磨轮廓面角度在负60度到正20度之间,打磨作业要在钢轨铺设完成15天后进行,工期不能超过15天,此外预打磨也包括在预防性打磨中。修理性打磨需要对钢轨进行反复打磨,消除钢轨已有的缺陷,恢复钢轨的轮廓形状,要求钢轨打磨列车保持较低的行驶速度。

2.3钢轨打磨要求

在钢轨打磨过程中,对施工有几点要求:

(1)打磨前要对易燃物品进行清除,尤其是轨道和道床附近,防止因打磨钢轨引起火灾;

(2)道床清筛时,要先对运行的线路进行固定,再进行钢轨的打磨;

(3)为保证钢轨打磨全面,打磨到轨距角,在打磨前要拆除钢轨护轨;

(4)为保证打磨施工正常进行,在钢轨打磨前,要仔细检查会对正常打磨造成影响的轨距角和轨道地段,提前采取有效措施;

(5)维护性打磨应控制在六遍打磨之内,修理性打磨则尽量控制在八遍以内,根据钢轨的实际受损程度决定钢轨的具体打磨次数;

(6)最后要进行一次精细化的打磨,保证打磨之后钢轨的光洁度。

2.4钢轨打磨的检验和验收

钢轨平直度的检验和验收主要利用专门的波磨尺或波磨检测系统;轨距角轨廓质量和打磨程度的检查使用便携式轮廓测试仪或轮廓检测系统;检查打磨廓面是否符合设计的要求,采用廓面仪;检查车轮行使光带宽度、是否严格居中,利用轨头廓面模板。打磨质量的一些标准评价:所有钢轨打磨面的粗糙度需保持在12um以下;轨顶面的垂直方向平直度不超过0.2mm/1m;轨距角R30-R80处圆弧不得超过4mm,R80处不得超过7mm,R300处不得超过10mm;打磨区向非打磨区的过度要做到光滑没有台阶;轨头与轨面要达到浑然一体;钢轨轨面不能出现连续的发蓝带;车轮行走光带的宽度在20-30mm之间并且必须居中。

3钢轨打磨技术的发展趋势

3.1智能化发展

随着科技技术的进步,打磨技术向智能化方向进一步发展。当前钢轨维护过程中固定了打磨模式数目,打磨目标廓型主要通过打磨角度、打磨功率的微调来实现,单次打磨需打磨2-5遍才能满足铁路线路的维护需求,维护成本较高,智能化的打磨技术可以通过借助钢轨廓型的处理和测量系统,对比当前廓型和目标廓型存在的差异,打磨的执行参数、工具的布置即可自动生成,使得打磨快速、精准。关键技术主要有:钢轨廓型测量技术、数据处理技术,要求准确、快速的呈现钢轨打磨后的廓型,将当前廓型和目标廓型的差别量化;研究打磨的机理,建立打磨工艺的参数库,保证智能化系统自动生成的执行参数库安全可靠,防止发生意外和事故。

3.2打磨信息集成化

打磨管理数据库集中体现了打磨作业信息的输入与输出,打磨管理主要包括钢轨维护中制定打磨计划、执行打磨方案和反馈打磨质量,而打磨数据库是一个统一的管理平台,它可以对打磨周期、策略及打磨的质量等问题进行统一协调。结合铁路线路的特征,对管理区域进行划分,坚持低成本、高效率的打磨原则,建立轨道维护、运营数据库,从而对打磨作业的实施进行系统地指导。

打磨管理数据库输入有可变因素与不变因素两种,需要不断检测钢轨的病害、分析打磨过程充实数据库信息,数据库中还可集成工程人员的工作经验,使得数据库的信息更加完善。当数据库完善至一定程度,即可通过信息的输出指导打磨方案的制定和策略的选择。

3.3打磨装备柔性化

钢轨打磨理论研究使得打磨技术为铁路线路维护更好地服务,打磨装备将理论研究的成果具体呈现出来,特有路况以及线路的不同对打磨装备通用性的要求提出了挑战,而打磨装备柔性化的提高可以满足铁路轨道维护面临的新要求。

结语

钢轨打磨对铁路安全运行和钢轨的使用寿命具有直接的影响,因而要提高钢轨的利用率,延长钢轨的使用寿命,不仅要注重钢轨的制造,而且要注意钢轨的维护。钢轨质量的高低对钢轨后期的维护具有重要影响,而钢轨打磨的好坏会影响钢轨的质量,在铁路线路施工中,钢轨的打磨可以有效防止钢轨波磨的出现,控制钢轨裂纹的扩宽、接触性疲劳和钢轨磨耗等,进行钢轨的打磨具有重要意义。

参考文献:

[1]都兴军.钢轨打磨技术应用浅谈[J].黑龙江科技信息,2015(1).

[2]刘学毅,印洪.钢轨波形磨耗的影响因素及减缓措施[J].西南交大报,2002,10(5):483-487.

[3]周重贺,刘鹏.铁路线路施工中基于钢轨打磨技术的微探[J].科技研究,2014(7).

[4]赵汝康.钢轨打磨与涂油的最新发展[J].铁路建筑,1992(6):1-4.

[5]刘莉丽,高亮,谷爱军,等.高速重载线路钢轨打磨策略研究[J].铁道标设计,2004,7(3):73-76.

标签:;  ;  ;  

钢轨打磨技术现状和发展趋势
下载Doc文档

猜你喜欢