结合遗忘特性的多任务多核在线学习算法

结合遗忘特性的多任务多核在线学习算法

论文摘要

对于数据流的处理,多任务多核学习已逐渐成为在线学习算法研究的热点,它在一定程度上可提高数据流预测的准确性。多核方法尽可能使用最少的核函数得到最好的实验效果,当数据量增大、训练模型稳定时,通过阈值限定的方法对核函数进行遗忘,从而减少基本核函数的使用个数,使得计算更加简单;对于算法的优化,通过引入一个遗忘变量,从对偶的角度来进一步优化权重更新过程,这里的权重指多个任务的共有特征权重和每个任务间的特有权重,以提高算法的收敛速度。实验部分对核函数的选取进行了较为详细的分析,通过对UCI数据集和实际的机场客流量数据集进行分析,证明该本算法的合理性和高效性。

论文目录

  • 0 引言
  • 1 数据的处理与分析
  • 2 模型优化
  •   2.1 在线学习的对偶理论
  •   2.2 一种带有遗忘特性的在线学习框架
  •   2.3 核函数选择
  •   2.4 时空复杂度分析
  • 3 实验仿真结果分析
  •   3.1 实验设置
  •   3.2 窗口数选择
  •   3.3 对偶函数值与原函数值的对比分析
  •   3.4 算法分类性能分析
  •   3.5 回归性能分析
  •   3.6 不同任务数回归性能分析
  • 4 总结
  • 文章来源

    类型: 期刊论文

    作者: 裴乐,刘群,舒航

    关键词: 多任务学习,多核学习,在线学习,流数据

    来源: 重庆邮电大学学报(自然科学版) 2019年06期

    年度: 2019

    分类: 信息科技

    专业: 自动化技术

    单位: 重庆邮电大学计算智能重庆市重点实验室

    基金: 国家重点研究发展计划(涉密项目(2016QY01W0200)),国家自然科学基金(61572091),重庆市产业类重点主题专项(cstc2017zdcy-zdyfx0091),重庆市人工智能技术创新重大主题专项重点研发项目(cstc2017rgzn-zdyfx0022)~~

    分类号: TP181

    页码: 849-860

    总页数: 12

    文件大小: 962K

    下载量: 82

    相关论文文献

    • [1].算法:一种新的权力形态[J]. 治理现代化研究 2020(01)
    • [2].算法决策规制——以算法“解释权”为中心[J]. 现代法学 2020(01)
    • [3].面向宏观基本图的多模式交通路网分区算法[J]. 工业工程 2020(01)
    • [4].算法中的道德物化及问题反思[J]. 大连理工大学学报(社会科学版) 2020(01)
    • [5].算法解释请求权及其权利范畴研究[J]. 甘肃政法学院学报 2020(01)
    • [6].算法新闻的公共性建构研究——基于行动者网络理论的视角[J]. 人民论坛·学术前沿 2020(01)
    • [7].算法的法律性质:言论、商业秘密还是正当程序?[J]. 比较法研究 2020(02)
    • [8].关键词批评视野中的算法文化及其阈限性[J]. 学习与实践 2020(02)
    • [9].掌控还是被掌控——大数据时代有关算法分发的忧患与反思[J]. 新媒体研究 2020(04)
    • [10].美国算法治理政策与实施进路[J]. 环球法律评论 2020(03)
    • [11].算法解释权:科技与法律的双重视角[J]. 苏州大学学报(哲学社会科学版) 2020(02)
    • [12].大数据算法决策的问责与对策研究[J]. 现代情报 2020(06)
    • [13].大数据时代算法歧视的风险防控和法律规制[J]. 河南牧业经济学院学报 2020(02)
    • [14].风险防范下算法的监管路径研究[J]. 审计观察 2019(01)
    • [15].模糊的算法伦理水平——基于传媒业269名算法工程师的实证研究[J]. 新闻大学 2020(05)
    • [16].算法推荐新闻对用户的影响及对策[J]. 新媒体研究 2020(10)
    • [17].如何加强对算法的治理[J]. 国家治理 2020(27)
    • [18].“后真相”背后的算法权力及其公法规制路径[J]. 行政法学研究 2020(04)
    • [19].算法规制的谱系[J]. 中国法学 2020(03)
    • [20].论算法排他权:破除算法偏见的路径选择[J]. 政治与法律 2020(08)
    • [21].政务算法与公共价值:内涵、意义与问题[J]. 国家治理 2020(32)
    • [22].算法的法律规制研究[J]. 上海商业 2020(09)
    • [23].蚁群算法在文字识别中的应用研究[J]. 信息与电脑(理论版) 2019(22)
    • [24].大数据聚类算法研究[J]. 无线互联科技 2018(04)
    • [25].RSA算法的改进研究[J]. 计算机与网络 2018(14)
    • [26].智能时代的新内容革命[J]. 国际新闻界 2018(06)
    • [27].改进的负载均衡RSA算法[J]. 电脑知识与技术 2018(25)
    • [28].基于深度学习的视觉跟踪算法研究综述[J]. 计算机科学 2017(S1)
    • [29].大数据算法的歧视本质[J]. 自然辩证法研究 2017(05)
    • [30].深度学习算法在智能协作机器人方面的应用[J]. 中国新通信 2017(21)

    标签:;  ;  ;  ;  

    结合遗忘特性的多任务多核在线学习算法
    下载Doc文档

    猜你喜欢