Lévy单的样本性质

Lévy单的样本性质

论文摘要

Lévy单是一类重要的具有零初值,平稳独立增量且随机连续的两参数随机过程,Poisson单、Brown单等都是特殊的Lévy单.Lévy单在物理、经济、金融、通信,保险等领域都具有十分重要的应用.因此,研究Lévy单具有重要的学术价值和应用价值.针对Lévy单的样本分布,一致随机连续性等,本文得到以下结果:(1)样本分布,给出了Lévy单同分布、独立同分布的相关结论.(2)一致随机连续性,证明了Lévy单在有界闭区间上一致随机连续,并在任意小的左开右闭矩形上的矩形增量按概率1收敛于0.同时,建立了这两个性质之间的联系.(3)随机有界性,Lévy过程在有界闭区间上以概率1取得最大值.Lévy单在有界闭区间上随机有界.(4)局部性质,得到了Lévy单在原点处的渐近性及非坐标轴上的点的局部增长性的相关结论.借助由Brown单导出的两参数Ornstein-Uhlenbeck过程的小球概率,研究了Brown单的相关性质.

论文目录

  • 摘要
  • abstract
  • 第一章 绪论
  •   1.1 研究背景与意义
  •   1.2 研究历史与现状
  •   1.3 本文的主要结论
  • 第二章 预备知识
  •   2.1 记号和约定
  •   2.2 单参数随机过程
  •   2.3 两参数随机过程
  • 第三章 Lévy单的样本性质
  •   3.1 Lévy单的分布性质
  •   3.2 Lévy单的一致随机连续性
  •   3.3 Lévy过程的随机有界性
  •   3.4 Lévy单的随机有界性
  •   3.5 Lévy单的局部性质
  • 第四章 结论与展望
  • 参考文献
  • 致谢
  • 攻读硕士期间完成的论文
  • 文章来源

    类型: 硕士论文

    作者: 刘丹华

    导师: 谢语权

    关键词: 过程,样本分布,一致随机连续,随机有界

    来源: 湘潭大学

    年度: 2019

    分类: 基础科学

    专业: 数学

    单位: 湘潭大学

    分类号: O211.6

    DOI: 10.27426/d.cnki.gxtdu.2019.001162

    总页数: 46

    文件大小: 1309K

    下载量: 6

    相关论文文献

    • [1].随机连续模型分析裂隙岩体耦合行为[J]. 岩土力学 2008(10)
    • [2].基于随机连续平衡模型的停车换乘需求[J]. 吉林大学学报(工学版) 2012(02)
    • [3].基于随机障碍验证的随机连续系统安全性验证[J]. 计算机应用 2018(06)
    • [4].两参数随机过程的一致随机连续性[J]. 吉首大学学报(自然科学版) 2019(02)
    • [5].L_p范数下随机连续函数空间中的Weierstrass定理[J]. 河北大学学报(自然科学版) 2018(01)
    • [6].随机连续杆纵向振动系统频率可靠性稳健分析[J]. 振动.测试与诊断 2013(05)
    • [7].急性心肌梗死患者对便秘的认知状况研究[J]. 中外医疗 2020(08)
    • [8].随机连续需求的分布式仓储两阶段模型研究[J]. 运筹与管理 2014(03)

    标签:;  ;  ;  ;  

    Lévy单的样本性质
    下载Doc文档

    猜你喜欢