一、不同生育时期干旱处理对夏花生生长发育的影响(论文文献综述)
刘兆新[1](2021)在《小麦套种花生周年协同高效施肥的理论基础与技术研究》文中进行了进一步梳理小麦套种花生是麦油两熟的重要种植方式,也是缓解粮油整地矛盾的重要途径。本研究于2015-2020年在山东农业大学作物生物学国家重点实验室和农学试验站进行。选用济麦22和山花101为试验材料,在小麦套种花生周年种植体系下,选用N-P2O5-K2O含量相同的普通复合肥(CCF)和控释复合肥(CRF),在施氮总量为300 kg/hm2的条件下,设置基肥:拔节期:挑旗期:始花期施肥比例分别为:50%-50%-0-0(JCF100),50%-0-50%-0(FCF100),35%-35%-0-30%(JCF70和JCRF70)和35%-0-35%-30%(FCF70和FCRF70),以不施肥为对照(CK),同时利用15N示踪技术研究不同肥料运筹对麦套花生光合生理特性、干物质积累与分配、氮素吸收利用、产量品质以及周年温室气体排放的影响,主要研究结果如下:1.不同肥料运筹对麦套花生生理特性及产量的影响在小麦套种花生周年种植体系下,全年氮肥两作三次施用(小麦基肥、追肥和花生追肥)能显着提高麦套花生叶绿素含量、LAI、Pn、ΦPSⅡ和qpo,且小麦挑旗期追肥效果优于拔节期追肥。在N-P2O5-K2O等比例和等养分处理下,与普通复合肥处理相比较,控释复合肥能够维持生育后期较高的SOD、POD与APX活性,同时降低各生育时期的MDA含量。表明控释复合肥有利于降低花生生育中后期叶片的膜脂过氧化程度,延缓叶片衰老。两作三次施肥方式显着提高了小麦的籽仁产量和花生的荚果产量,增加了麦套花生干物质和氮素积累总量,同时控释复合肥处理促进了氮素向花生荚果的转运,从而提高了氮素收获指数。可见,两作三次施肥并采用控释复合肥,能够延长麦套花生叶片的功能期,延缓叶片衰老,从而增加花生产量。2.控释复合肥对麦套花生光系统II性能及品质的调控效应控释复合肥显着提高叶片捕获的激子将电子传递到电子传递链中QA下游的其他电子受体的概率(Ψo)和以吸收光能为基础的性能指数(PIabs),降低K点的可变荧光FK占Fj–Fo振幅的比例(Wk)和J点的可变荧光Fj占振幅Fo–Fp的比例(Vj),表明PSⅡ反应中心电子传递链综合性能以及供体侧和受体侧的电子传递能力均明显提高,其中受体侧性能的改善大于供体侧。在N-P2O5-K2O等比例和等养分处理下,与普通复合肥处理相比较,控释复合肥对花生脂肪含量影响不大,但明显增加了可溶性糖和蛋白质含量,说明控释复合肥有利于花生籽仁蛋白质积累。另外,JCRF70处理还可以增加花生脂肪酸组分中油酸含量,降低亚油酸含量,提高花生籽仁的O/L比值,对延长花生制品货架寿命有利。3.不同肥料运筹对小麦花生周年氮素吸收的影响两作三次施肥方式同时推迟追肥时期对小麦季氮素吸收没有显着影响,但增加了花生季和周年的氮素吸收总量。小麦季15N来源于追肥的比例要高于基肥。花生季15N来源于花针期追肥的比例大约是挑旗期追肥或者拔节期追肥的两倍,在相同追肥比例下,花生季15N来源于挑旗期追肥的比例要显着高于拔节期追肥。15N示踪试验表明,小麦对挑旗期或者拔节期追肥的氮素回收效率要显着高于基肥。在相同的施肥比例下,花生对挑旗期追肥的氮素回收效率要显着高于拔节期追肥;此外,花生对花针期追肥的氮素回收效率要高于挑旗期追肥或者拔节期追肥,氮素损失率表现出相反的变化规律。由于同时具有较高的氮素回收效率和土壤残留率,FCF70处理的损失率在三个施肥处理中最低。4.不同肥料运筹对小麦花生周年温室气体排放的影响与CK相比较,各施肥处理的N2O排放通量显着增加,尤其在灌水或者降雨后更为明显。由于较高的气温和较多的降雨量,整个花生季各施肥处理的N2O排放通量要整体高于小麦季。两作三次施肥方式N2O累积排放量要显着高于一作两次施肥,相同施肥量情况下,JCRF70处理的N2O排放量在两个生长季均低于JCF70。CO2排放通量与N2O排放通量在小麦季与花生季均表现出相同的变化趋势。各施肥处理的GWP较CK均显着增加,在相同施肥量情况下,JCF70处理的GWP较JCRF70提高了7.2%。但JCF100和JCRF70两处理间没有显着性差异。由于两作三次施肥显着增加了作物产量,JCF70和JCRF70处理的GHGI较JCF100分别降低了11.0%和18.2%。此外,由于周年产量最高,JCRF70处理的GHGI在所有处理中最低。
叶玉秀[2](2021)在《水分胁迫影响糯玉米产量形成的生理机制研究》文中认为为探明水分胁迫影响糯玉米籽粒产量的生理机制,试验于2014~2015年以国家南方糯玉米区域试验对照品种苏玉糯5号和渝糯7号为材料,研究了不同时期[开花期(抽雄-吐丝)、籽粒建成期(授粉后1-15 d)]水分胁迫(干旱或渍水)对糯玉米产量形成的影响,并从物质积累及转运、抗氧化系统、内源激素、光合作用、碳氮代谢相关酶活性方面分析了其影响产量形成的生理机制。主要结论如下:1产量及物质积累与转运开花期和籽粒建成期水分胁迫降低了糯玉米每穗粒数和粒重,进而降低产量。苏玉糯5号的籽粒产量在开花期干旱(DW1)、开花期渍水(WW1)、籽粒建成期干旱(DW2)和籽粒建成期渍水(WW2)下分别降低了 15.15%、20.17%、27.35%和35.52%;渝糯7号分别降低了 11.95%、15.97%、21.70%和30.26%,表明渍水对糯玉米籽粒产量的影响程度大于干旱,且籽粒建成期水分胁迫对产量的影响程度大于开花期。不同时期水分胁迫均降低了籽粒干重,而籽粒含水量在DW1、DW2和WW1下均显着降低,WW2处理下籽粒含水量21 DAP前高于对照,21 DAP后低于对照,表明灌浆进程受抑。水分胁迫显着增加了糯玉米花前营养器官转运率和花前营养器官转运量对籽粒产量贡献率,降低了花后营养器官同化物转运量、花后营养器官同化物对籽粒产量贡献率以及花后干物质积累量,表明水分胁迫条件下产量对花前营养物质转运量的依赖性增强。2光合荧光特性水分胁迫(干旱或渍水)降低了叶片含水量、气孔导度(Gs)、蒸腾速率(Tr)、光化学猝灭系数(qP),抑制了叶片光合速率(Pn)、实际光化学效率(ΦPSⅡ)、PSⅡ光化学效率(Fv/Fm),提高了叶片胞间CO2浓度(Ci),增加了叶片非光化学猝灭系数(NPQ),渍水对光合参数的影响程度大于干旱,且水分胁迫对苏玉糯5号的影响大于渝糯7号,表明苏玉糯5号对水分胁迫更加敏感。不同时期水分胁迫表明,籽粒建成期水分胁迫对各指标的影响程度大于开花期。复水后,各指标均能得到不同程度恢复,其中开花期水分胁迫下的各指标基本能恢复到CK水平。相关分析表明,产量与Pn、Tr、Ch1 a、Ch1 b以及Car呈极显着正相关,而水分胁迫降低了叶片的Pn、NPQ以及光合色素等光合参数,增加了 Ci,进而影响糯玉米物质生产过程。3抗氧化酶和渗透调节物质水分胁迫提高了叶片和籽粒中超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性和O2-的产生速率,增加了叶片中可溶性蛋白、丙二醛(MDA)、脯氨酸(Pro)和可溶性糖含量。水分胁迫对强势粒的影响小于弱势粒,而渍水对抗氧化酶活性和渗透调节物质的影响程度大于干旱,从而能更有效的清除活性氧,减轻细胞膜损伤。相关分析表明产量与蛋白质含量、可溶性糖含量、SOD、POD和CAT活性呈显着正相关,与MDA、Pro、O2-含量呈显着负相关。4内源激素干旱或渍水增加了叶片和籽粒中脱落酸(ABA)含量,提高了乙烯释放速率(ETH),降低了赤霉素(GA3)、玉米素和玉米素核苷(Z+ZR)和3-吲哚乙酸(IAA)的含量,水分胁迫对强势粒的影响程度小于弱势粒。籽粒建成期水分胁迫对各指标的影响程度大于开花期。复水后,各指标均能得到不同程度的恢复,其中开花期水分胁迫下的各指标基本能恢复到CK水平。水分胁迫对苏玉糯5号的影响程度显着大于渝糯7号,表明苏玉糯5号对水分更加敏感。相关分析表明,产量与叶片、籽粒中ABA、IAA及Z+ZR含量呈极显着正相关,与GA3和ETH含量呈极显着负相关。结果表明水分胁迫下较低的GA3、Z+ZR以及IAA含量和较高的ETH释放速率可能是粒重下降的重要原因。5碳氮代谢相关酶籽粒中ADPG焦磷酸化酶(AGP)活性、可溶性淀粉合成酶(SSS)活性、叶片和籽粒中蔗糖含量、蔗糖磷酸合成酶(SPS)活性、蔗糖合酶(合成方向)活性、谷氨酸合酶(GOGAT)活性、谷氨酰胺合成酶(GS)活性以及蔗糖合酶(分解方向)活性随着灌浆进程先升后降。叶片中淀粉含量、AGP活性、叶片和籽粒中蛋白质含量和硝酸还原酶(NR)活性随着灌浆进程逐渐下降。籽粒中淀粉含量随着灌浆进程逐渐上升。干旱或渍水使叶片和籽粒中淀粉、蔗糖和蛋白质含量减少,且渍水的下降幅度大于干旱;干旱或渍水显着降低了淀粉合成相关酶、氮代谢相关酶、SPS、以及蔗糖合酶(合成方向)活性,提高了蔗糖合酶(分解方向)活性,影响以9 DAP时最大,且渍水影响程度显着大于干旱,籽粒建成期的影响程度大于开花期。复水后,各指标均能得到不同程度的恢复,其中开花期各指标基本能恢复到CK水平,而籽粒建成期水分胁迫处理在复水后14 d仍然恢复不到CK水平,表明籽粒建成期水分胁迫对植株造成了不可逆的伤害。相关分析表明,产量与叶片和籽粒淀粉含量、蔗糖含量、NR、GS、GOGAT、SPS、AGP、SSS以及SBE酶活性呈显着或极显着正相关。这表明较高的淀粉合成相关酶活性及蔗糖合成相关酶活性有利于籽粒中营养物质的积累,进而提高产量。
孙瑞[3](2021)在《正阳县气象因素变化特征及对夏花生生长的影响》文中指出作物的生长发育、产量和品质的形成受到气象因素的制约。研讨作物对气象因素的要求及其反应规律,可为农作物生产管理提供科学依据和实践指导。分析了正阳县夏花生各生育时期所需的气象条件需求,利用正阳县1959—2018年近60 a来5—10月气温、降水、日照等气象资料,分析其变化特征,阐述各主要气象因素对夏花生生长的影响,同时指出花生常见病害与气象因素的相关性,并提出应对措施预防花生病害的发生,以期为全县夏花生生产提供科学依据。通过分析正阳县60 a来气象数据得出,正阳县年平均气温为15.2℃,年平均降水量为961 mm,年平均日照时数为1 960.6 h,夏花生全生育期活动积温为3 760.7℃,5—10月平均气温为23.2℃,平均日照总时数为952.0 h,平均降水量为697.9 mm,这些必备的光、热、水等气象因素可以为夏花生高产提供高积累、低消耗的有利保障,但各种气象因素合理配置即风调雨顺的年份才能使得花生高产优质,建议充分利用当地的气候资源,选取优良的花生品种,合理利用气象条件,进一步优化农业产业结构,同时密切关注当地天气预测、预报,把低温、冻害、暴雨、干旱等灾害性天气对夏花生生产造成的损失降到最低,提高农民收入。
闫建峰[4](2020)在《滴灌和根瘤菌施用对北疆花生生长及产量的影响》文中研究表明新疆是我国花生新兴产区,发展花生产业具有一定的资源优势。但是,新疆地区花生栽培技术研究起步较晚,对于抗逆、高产、高效栽培模式研究较少,干旱、养分流失、土壤肥力退化等逆境严重威胁着花生产量的提高。因此,系统研究覆膜滴灌及根瘤菌剂施用对花生生长发育、固氮特性、产量等性状的影响,将为新疆地区花生抗逆、高产、高效栽培提供科学依据。本试验选用适宜的花生农花9号为材料,在覆膜滴灌(MF)和滴灌(NF)2种栽培方式下,施用根瘤菌粉剂拌种(MI1)、根瘤菌水剂(MI2)拌种、清水拌种(CK),研究其对花生生长发育、干物质积累、光合特性、养分吸收利用、产量的影响。主要研究结果如下:1.覆膜滴灌显着促进了花生生长发育。MF种植模式下主茎高、第一侧枝长均显着优于NF,而两种栽培模式下,不同根瘤菌剂拌种对花生主茎高、第一侧枝长影响不显着。说明MF种植模式显着促进花生生长,而根瘤菌剂对花生生长影响不大。2.覆膜滴灌显着增强了花生光合特性。与NF相比,MF+MI1处理下花生植株叶面积指数最大,比NF+CK显着提高26.85%,Pn显着提高19.81%,Tr、Gs均有呈增加趋势,而Ci显着降低,说明MF+MI1种植模式下能显着提高花生叶片光合性能。3.覆膜滴灌促进了花生干物质积累、养分吸收利用效率。MF+MI1处理下各器官干物质积累速率比其他处理均快,且养分吸收量比其他处理均显着高。4.覆膜滴灌显着提供了产量,增加了经济效益。MF+MI1处理下,荚果产量最高,比NF+CK处理显着增加1346.7kg/hm2,增产34%,经济效益显着增加20200.5元/hm2,增收34.6%。说明MF+MI1种植模式能显着提高产量且增加经济收益。综上所述,覆膜滴灌及根瘤菌剂处理可显着提高花生光合作用、干物质积累、养分吸收利用、产量和经济效益,在北疆花生生产中,应当大力推广膜下滴灌及根瘤菌剂拌种高产、高效栽培技术。
刘娜[5](2020)在《钾素对花生生育特性及产量品质的影响》文中进行了进一步梳理本试验于2018年至2019年在沈阳农业大学试验基地和沈阳市辽中区满都户镇试验基地进行,以农花9号为试材,研究了在相同氮、磷用量情况下,不同的钾素水平对花生植株形态、根瘤特性、光合特性、干物质积累、养分吸收积累以及产量和籽仁品质等方面的影响,探究钾素对花生生理代谢及产量形成的作用机理,并明确不同地区花生的最佳钾肥施用量,为花生的大田生产提供参考依据。本试验得出的主要结论如下:1.花生的主茎高和侧枝长对钾素的用量不敏感,钾素的多少与有无没有对其株高造成显着差异,因此推测钾素对花生的株高影响不大;钾素的适量增施能显着提高花生开花下针期的叶面积指数,但两地的效果略有差异,沈阳农业大学试验地为T2处理效果最好,辽中试验地为T3处理的效果最显着;钾素的增施对花生总根长、平均根系直径、总根表面积和总根体积有不同程度的促进作用,辽中试验地的钾素促进效果更好。2.少量增施钾素能促进花生根瘤数量和干重的增加,沈阳农业大学试验地T1处理效果最好,整个生育期内根瘤数量和干重的变化不大;辽中试验地T2处理效果最好,开花下针期和结荚期的根瘤数量和干重较苗期有大幅度增加。两地横向比较,辽中试验地的根瘤数和干重远高于沈阳农业大学试验地。观察各处理的根瘤超微结构可知,钾素的施入使花生结荚期的根瘤提前出现衰老现象,推测其原因可能是钾素的施入促进根瘤的形成和成熟,使其提前进入成熟状态,进而导致衰老的提前出现。3.在微观层面,钾素的增施提高了花生各时期叶片的叶绿素含量,有利于花生开花下针期和结荚期的净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)的提高;在对花生的光响应曲线进行拟合后发现,钾素的施入提高了花生的光饱和点(Isat)和最大净光合速率(Pmax),降低了光补偿点(Lcp)和表观暗呼吸速率(Rd);在宏观层面,钾素的增施提高了花生的群体光合势,延长了花生叶片的工作时间。因此,钾素的增施有利于花生叶片光合效率和光合时长的增加。4.钾素的增施,促进了花生植株干物质的积累,进而增加了植株氮、磷、钾的吸收积累,提高了最大积累速率和平均积累速率,延长了氮和钾的活跃积累期,增加了氮、磷、钾的最大积累量。三种营养元素积累动态模型的Logistic方程显示,氮、磷、钾素的最大积累速率均在T2处理的钾肥用量下取得最大值,氮素积累最大速率分别为31.56mg d-1和25.87 mg d-1,大约出现在出苗后60天和65天;钾素积累的最大速率分别为10.69 mg d-1和8.10 mg d-1,大约在出苗后57天和51天;磷素的最大积累速率分别为1.31 mg d-1和0.88 mg d-1,出现时间较氮、钾晚,大约为出苗后80天和78天。5.钾素在两地均表现出了对群体产量的促进作用,沈阳农业大学试验地为T2处理的产量最高,钾肥更多的T3处理对花生产量的促进作用减弱,辽中试验地的花生产量则是随着钾肥用量的增加而增加,T3处理产量最高且与CK处理间的差异达到显着;在花生个体上的表现,如单株饱果数、单株饱果重、百果重和百仁重等对钾素用量的响应与产量的规律基本一致。6.花生籽仁的蛋白质和脂肪含量在施钾后都有提高,辽中地区的蛋白质和脂肪增加量更为显着。油酸含量有下降的趋势,O/L比有下降的趋势,但无显着差异。除此之外,钾素的施入也引起了花生籽仁中含量较少的其他脂肪酸和氨基酸含量的波动,但规律尚不显着,还有待进一步研究证实。
黄旭[6](2020)在《水氮管理对花生产量、水氮利用及农田碳平衡的影响》文中提出为揭示旱地花生“土壤-植物”系统水、碳、氮的消耗与利用关系和构建科学的水氮农业管理方式,本文以“农花9号”为试验研究对象,采用裂区试验设计方法,以不同灌溉模式(全生育期充分灌溉,W0;花针期、饱果期进行调亏灌溉,W1)为主区,W0、W1的灌水上限均为田间持水率(占土壤体积百分比),W0的灌水下限为75%80%θf,W1的灌水下限为55%60%θf,其他生育期同W0,不同纯氮水平(N0,0 kg·hm-2、N1,50 kg·hm-2、N2,100 kg·hm-2和N3,150 kg·hm-2)为子区。研究不同的灌溉模式和氮肥对花生生长、干物质和碳氮积累、产量、水分和氮素利用效率及农田碳平衡的影响。试验结果如下:(1)水分和氮肥对花生株高、叶面积及干物质积累具有显着影响。增施氮肥100kg·hm-2可以显着提高花生株高、叶面积及干物质积累。调亏灌溉(W1)模式下更有利于干物质积累量,较充分灌溉(W0)模式提高了9.28%(2018)和5.90%(2019)。在调亏灌溉(W1)模式下,增施100 kg·hm-2氮肥促进花生株高、叶面积生长的同时可显着提高花生干物质积累量。(2)水分和氮肥对花生产量、百果重、百仁重均具有显着影响。2018年和2019年花生产量均在调亏灌溉(W1)模式增施100 kg·hm-2氮肥下最高,其值分别为5850.08kg·hm-2(2018)和5930.88 kg·hm-2(2019)。两年花生百果重、百仁重均在调亏灌溉(W1)模式增施50 kg·hm-2氮肥下最高,两年花生百果重分别为198.41 g(2018)和199.05 g(2019),两年花生百仁重分别为85.43 g(2018)和85.78 g(2019)。(3)水分和氮肥对花生的碳氮积累均具有显着调控作用。调亏灌溉(W1)模式可显着提高叶片和茎部的碳氮含量及碳氮比(C/N)。随施氮量增加,叶片和茎部碳含量先增加后下降;而叶片和茎部氮含量呈增加的趋势。在全生育期花生叶片和茎部的碳氮比(C/N)表现不同,叶片的碳氮比(C/N),随施氮量增加先增加再降低,在增施100 kg·hm-2氮肥时叶片的碳氮比(C/N)较高,可保持碳氮积累平衡,有利于花生增产;而花生茎部的碳氮比(C/N)则随着施氮量的增加而减小,在增施100 kg·hm-2氮肥时茎部的C/N较低,有利于茎部对碳同化物的运输,保持源库关系平衡。叶片和茎部的碳氮含量与产量呈显着正相关,在调亏灌溉(W1)模式增施氮肥100 kg·hm-2,叶片和茎部的碳氮含量及产量均最高。(4)水分和氮肥对花生农田碳平衡具有显着影响。不同的水分和氮肥下花生农田生态系统均表现为碳汇。与充分灌溉(W0)相比,调亏灌溉(W1)降低了7.21%(2018)和7.45%(2019)土壤CO2累积排放量,但提高了植株固碳量,促进了农田净生态系统生产力的增加。全生育期土壤CO2累积排放量随施氮量增加呈增加的趋势,而植株固碳量先升高再降低,农田净生态系统生产力在增施氮肥100 kg·hm-2时为最高值。在两种灌溉模式下增施氮肥均可显着提高农田净生态系统生产力,且调亏灌溉(W1)模式增施氮肥100 kg·hm-2最为明显,两年农田净生态系统生产力分别为428.70 kg·hm-2(2018)和456.97 kg·hm-2(2019)。(5)水分和氮肥对花生水、氮利用率具有显着影响。增施氮肥100 kg·hm-2时两年氮肥农学利用效率、籽粒氮肥吸收利用率和氮肥表观回收率最高,同时显着提高26.79%(2018)和28.10%(2019)水分利用率,且在调亏灌溉(W1)模式下可进一步提高花生的水、氮利用率。综上分析,调亏灌溉(W1)模式下向花生农田增施氮肥100 kg.hm-2可显着促进花生对水氮的利用,提高花生产量,改善植株体内碳氮平衡,降低土壤CO2排放,提高农田净生态系统生产力的能力,是实现节水节肥减排固碳稳产最优的水氮农业管理方式。
张婉[7](2020)在《不同腐植酸肥对花生生长和产量的调控效应》文中研究表明花生是我国重要的油料作物和经济作物,山东省花生种植面积大,目前在花生生产上普遍存在化肥过量施用的情况,导致肥料利用率低、环境污染等问题。腐植酸中的活性物质对土壤养分活化、土壤理化结构改善和肥效提升均具有积极作用。本研究于2019年在山东农业大学岱岳试验基地进行,以山花9号为供试材料,在春播和夏播两种种植模式下,设置了肥料减施以及三元复合肥分别与黄腐酸、腐植酸配施等11个不同肥料处理,研究其对花生生长发育、干物质积累、养分积累、产量及其产量构成因素、品质的影响。以评价腐植酸肥料的肥效,探讨腐植酸肥料对花生生长发育的作用机理,为探明花生生产合理的腐植酸肥施用量以及提高肥料利用效率提供科学依据,本研究主要结果如下:1.通过对植株农艺性状和干物质积累进行分析发现,750 kg/hm2的肥料中添加或者配施腐植酸和黄腐酸,有利于春花生侧枝的伸长、夏花生主茎节数的增加和花生干物质的积累。当肥料减施30%时,添加或者配施腐植酸和黄腐酸对花生主茎高、侧枝长、主茎节数、主茎绿叶数、分枝数等农艺性状和干物质积累无显着影响。说明黄腐酸和腐植酸作为肥料调理剂,对施入土壤的肥料有一定的缓释效果,提高肥效,能够在一定程度上降低肥料施用量。2.通过对矿质养分积累的分析发现,750 kg/hm2的肥料中添加或者配施腐植酸和黄腐酸能显着提高春花生地上部对N、P、K等矿质养分的吸收,且配施黄腐酸的提高效果优于腐植酸。当肥料减施30%时,添加或者配施腐植酸和黄腐酸的养分积累量(N、P、K)较750 kg/hm2三元复合肥略有提高;而当肥料减施40%时,添加或者配施腐植酸和黄腐酸的养分积累量(N、P、K)会大大降低。说明黄腐酸和腐植酸作为肥料调理剂对施入土壤的肥料有一定的缓释效果,提高肥效,从而在一定程度上降低肥料施用量。3.通过对产量及其构成因素的分析发现,750 kg/hm2的肥料中添加或者配施腐植酸和黄腐酸能提高花生的产量,但增产效果不显着,具体为显着提高了花生的饱仁率和出仁率,但对饱果率的提高不显着,其中黄腐酸与三元复合肥配施的增产效果优于腐植酸。当肥料减施30%时,添加或者配施腐植酸和黄腐酸时的饱果率、饱仁率、出仁率、产量与只施用750 kg/hm2三元复合肥相比无显着差异,说明黄腐酸和腐植酸作为肥料调理剂对施入土壤的肥料有一定的缓释效果,提高肥效,能够在一定程度上降低肥料施用量,实现减肥不减产。4.通过对品质分析发现,不同腐植酸肥处理对花生蛋白质含量、脂肪含量、油酸含量、亚油酸含量影响不显着。综上所述肥料中添加或者配施腐植酸和黄腐酸有利于提高肥料的肥效,对花生植株的生长发育、干物质积累、养分积累、产量的提高有促进作用。腐植酸和黄腐酸作为肥料调理剂,对施入土壤中的肥料具有一定的缓释效果,使养分缓慢释放提高肥效,减量施肥30%,在花生的农艺性状、植株干物质积累量、对矿质养分的吸收量、饱仁率、出仁率、产量、品质等方面影响不显着,可以实现减肥不减产的效果,且配施黄腐酸的减施效果优于配施腐植酸。
黄方园[8](2020)在《覆盖模式对不同旱作区农田土壤主要性状和玉米生长的影响》文中研究表明旱作农业生产在保障全球粮食安全中扮演着不可或缺的角色。然而,降水的稀缺和较大的时空变异性严重威胁旱作农业生产的可持续性。农田覆盖技术,特别是塑料薄膜覆盖已被广泛用于旱地作物生产,但不同旱作区的光温水热资源差异较大,农田覆盖技术的增产效果也将受到地域间气候因素的影响。因此,依据区域特点进行适当的农田覆盖管理措施有利于提高资源利用率和农田生产力,促进旱作地区农业的可持续发展。本研究连续多年在中国黄土高原半干旱区(宁夏彭阳)和半湿润区(陕西杨凌)设置不同覆盖处理:(1)垄膜沟播种植(R)、(2)平作塑料薄膜全覆盖(P)、(3)平作降解膜全覆盖(B)、(4)平作秸秆全覆盖(S)和(5)传统平作种植(CK),研究了不同农田覆盖模式对土壤水分(SM)、土壤温度(ST)、土壤碳氮养分、土壤微生物群落结构和作物生产力的影响,取得的主要研究结果如下:(1)不同农田覆盖模式对土壤水温状况的影响不同覆盖模式显着影响了玉米农田土壤温度,随着生育进程的推进各覆盖处理间的差异逐渐减小。在半干旱区,三个覆膜处理均表现出明显的增温效果,大小表现为P>B>R。在半湿润区,P和R处理整个生育期0-25 cm平均土壤温度较CK平均提高3.1?C和0.6?C。两个试验区的S处理在整个生育期均具有明显的降温效应,并在半干旱区对土壤的降温效果更为明显。不同覆盖模式在休闲期均具有一定的保墒效果,但受不同区域和降水年型的影响,两个试验区均以P覆盖的休闲期储水效果最好。此外,两个试验区的覆膜处理均能有效提高生育前期的土壤含水量,随着生育期的推进,由于生物量和作物蒸腾作用的增加,覆膜处理促进了生育中期作物对深层土壤水分的利用,而在生育后期表层土壤含水量又有所回升,生育期农田耗水量呈现“前低—中高—后低”的规律。S处理在整个生育期较CK一直保持较高的土壤含水量。此外,在半干旱区以P处理下的农田耗水量(ET)最高,其平均ET分别比R、B、S和CK高44.5 mm、44.1 mm、65.5 mm和59.9 mm,在半湿润区各处理的ET大小顺序为P>S>R>CK。(2)连续覆盖对土壤碳氮养分的影响连续覆盖对不同覆盖模式下的土壤全氮和土壤有机碳含量的影响不同。与试验前相比,两个试验区表层(0-20 cm)土壤全氮均呈逐渐下降趋势,且均以塑料薄膜覆盖(R和P)和降解膜覆盖(B)处理表层土壤全氮含量下降速率最大,其次S处理和CK。然而,半干旱区R、P和S覆盖下的表层土壤有机碳含量较试验前略有上升,B和CK处理的土壤有机碳则分别降低了0.03和0.04 g kg-1,但均与试验前差异不显着。在半湿润区,除S处理外,其他处理两个土层(0-20 cm和20-40 cm)土壤有机碳均有所下降。土壤可溶性碳氮(DOC和DON)在表层(0-20 cm)土壤中的含量最高,随着土层加深而逐渐降低。两个试验区表层土壤的DOC含量均以S处理最高,覆膜处理则较CK降低了表层土壤的可溶性碳氮含量。各处理间的可溶性碳氮含量在20-40 cm和40-60 cm土层基本无明显差异。硝态氮在0-100 cm土壤剖面中的垂直分布情况受不同降雨年份的影响,玉米生育后期降雨少,各处理硝态氮剖面峰值及差异集中在上层土壤(0-40 cm);玉米生育后期降雨较多会导致收获期硝态氮的淋溶,使深层(60-100 cm)土壤硝态氮的含量较高。两个试验区的覆膜(R、P和B)处理促进了作物对氮素的吸收,降低了土壤硝态氮在深层土壤的积累,S处理的硝态氮分布与CK间无明显差异。各处理土壤铵态氮的含量较硝态氮低,分布规律与硝态氮类似。(3)连续覆盖对土壤微生物群落结构的影响连续覆盖导致两个试验区的土壤理化性质发生了改变,并进一步导致土壤微生物群落结构的变化,与其他覆盖处理相比,半干旱区的P处理和半湿润区的R处理均同时提高了土壤真菌和细菌的多样性和丰富度。土壤理化性质的改变与土壤微生物群落结构的变化密切相关,其可以解释半干旱区(彭阳)80%以上的土壤微生物群落结构的改变和半湿润区(杨凌)超过90%的土壤微生物群落的变异;其中在半干旱区细菌群落变化主要受SM的影响,真菌群落变化主要取决于土壤养分(硝态氮NO3-N、土壤全氮TN)和ST;而SM和ST是影响半湿润区不同覆盖模式下的土壤微生物群落结构变化最主要的因素。(4)不同覆盖模式对玉米生长发育的影响覆膜(R、P和B)处理明显缩短了玉米的生育期,显着提高了玉米的株高、茎粗和叶面积指数,进而显着提高了生物量及穗干重占总干物质量的比重,在半干旱区表现为P>R>B,而在半湿润区的R和P处理收获期生物量较CK平均提高了19.2%和20.7%。S处理在两个区域均延缓了玉米的生育进程,但其对玉米生长发育的影响在不同降雨年份表现不同,在平水年,其株高、茎粗、叶面积指数和干物质积累量较CK均有所降低,而在干旱年则有不同程度的提高。不同覆盖模式对干物质转运与分配的影响在不同试验区域表现不同。在半旱区,与对照相比,各覆膜(R、P和B)处理显着提高了吐丝后干物质积累量对籽粒的贡献率(2017年除外),S处理下干物质转运与分配的变化受降雨年份的影响。在半湿润区,不同试验年份R和P处理吐丝后同化物输入籽粒量分别较CK平均提高了20.9%和21.1%,S处理仅在2016年显着提高了吐丝后同化物输入籽粒量,但各覆盖处理对吐丝后同化物转运量对籽粒的贡献率没有显着影响。(5)不同覆盖模式对玉米产量、水分利用效率(WUE)和经济效益的影响三个覆膜处理通过增加穗粒数和百粒重,显着提高了玉米的籽粒产量,在半干旱区,R、P和B处理较CK平均增产2971 kg ha-1、6831 kg ha-1和1600 kg ha-1,其中R和P处理的净收益也有不同程度的提高,而B处理由于覆盖材料成本过高,净收益有所降低;此外,半干旱区以P处理下的WUE最高,其次是R、B、S和CK处理。在半湿润区,R和P处理的增产幅度为5.7%~24.8%和8.5%~20.4%,经济效益较CK平均增加1156元ha-1和857元ha-1;而R处理的WUE分别较P、S和CK处理平均提高7.4%、18.0%和15.2%。S处理的产量和WUE受降雨年型的显着影响,平水年由于百粒重的降低而使玉米籽粒产量下降,并降低了WUE,干旱年的产量和WUE则有不同程度的提高,而其在半干旱区和半湿润区的经济效益较CK分别降低了524元ha-1和977元ha-1。总体而言,P覆盖下的玉米籽粒产量和经济效益在半干旱区的表现明显优于半湿润区,而半湿润区以R覆盖获得WUE和经济效益最大,S处理对半干旱区玉米产量和WUE的影响较大。不同区域农田覆盖条件下玉米生产力的变化与土壤理化性质和土壤微生物的变化密切相关。在半干旱区,播前土壤储水量(SWSS)、ST、蒸散量(ET)、TN和土壤有机碳(SOC)与籽粒产量、WUE和经济效益均显着相关;半湿润区的产量、WUE和经济效益主要受ET和TN的影响,表明协调土壤水温与土壤养分有助于改善半干旱区的作物产量,但在半湿润区SWSS和ST却不是限制作物产量提高的主要因素。此外,土壤细菌多样性与两个区域的作物籽粒产量显着正相关,而真菌群落主要影响WUE。综上所述,农田覆盖模式对土壤主要性状和玉米生产力的影响受不同旱作区气候条件的显着影响,在不同区域依据主要限制因子筛选适宜的覆盖模式,是维持旱地农田生产力的有效途径之一。塑料薄膜全覆盖(P)在半干旱区可以持续提高玉米产量,而其在半湿润区对作物产量的提高程度较小,因此更适合冷凉的半干旱区。降解膜全覆盖(B)在半干旱区的增产效果不可持续,且弱于塑料薄膜全覆盖。垄膜沟播种植(R)在半湿润区能够持续提高玉米生产力和经济效益,而其在半干旱区增加了玉米产量的年际变化。虽然秸秆覆盖(S)的增产效果不如塑料薄膜覆盖处理,但其在干旱年的表现优于不覆盖处理。考虑到秸秆的土壤培肥效应和塑料薄膜全覆盖对土壤养分的消耗,薄膜覆盖与秸秆的结合可以在提高作物生产力的同时平衡地力。
张俊,刘娟,臧秀旺,郝西,汤丰收,董文召,齐飞艳,刘华[9](2019)在《麦秸覆盖对土壤理化性质及夏花生生长发育的影响》文中提出为研究麦秸覆盖与否对土壤理化性质、夏花生生长发育及产量的影响,采用随机区组试验,在花生夏直播平作模式下,调查麦秸覆盖与不覆盖处理的土壤物理性状、土壤酶活性、花生营养、生殖生长及产量、品质等指标的变化。结果表明,麦秸覆盖后,产量、饱果率、出仁率比未覆盖分别降低5.2%、9.8%、0.66%。麦秸覆盖显着影响了土壤理化性状,使得土壤温度、张力、容重、脲酶活性下降,土壤湿度、孔隙度和多酚氧化酶活性增加;同时,覆盖还影响了花生的营养生长,麦秸覆盖后显着降低了花生的主茎高、侧枝长、叶面积和叶片SPAD值;与不覆盖相比,麦秸覆盖降低了花生的开花量、果针数和结果数,最终导致产量降低。麦秸覆盖可改善土壤不良的理化性状,但覆盖后地温降低,延缓了花生的生育进程,不利于当季花生的生长发育及结实。研究结果为麦茬夏花生高产栽培技术的集成提供了理论依据。
石必显,林明,顾元国,贾东海,侯献飞,苏君红,于伯成,李强[10](2019)在《不同干旱胁迫对花生生长发育及产量的影响》文中研究说明【目的】在新疆特殊生态条件下,分析花生在不同干旱胁迫下的生长发育规律,研究花生不同生育时期对干旱胁迫的敏感性,为新疆花生生产合理灌溉和产量提高提供依据。【方法】以花生品种花育36为材料,通过人工控水对其进行干旱胁迫,设置花针期干旱、结荚期干旱和全生育期干旱三个处理,以正常灌水为对照,研究不同生育时期各处理的相关农艺性状及最终产量的变化。【结果】干旱胁迫会影响到花生的各生育期进程,长期受旱会缩短花生的生育期时间;各生育时期遭受干旱胁迫后,花生在株高、叶面积系数、地上部干物质积累和荚果干重均有不同程度的降低,且随干旱时间的延长,降低幅度增大。结荚期干旱胁迫对花生株高的影响相对较小,花针期干旱对植株生长发育及产量的影响较大。干旱胁迫对最终产量的影响不但与有效果数的降低有关,而且与荚果的饱满度(百果重)有关,两者共同作用造成了花生产量的降低。【结论】不同程度干旱胁迫会对花生的生育期进程、株高、叶面积系数、地上部干物质积累和荚果干重等造成不同影响,花针期干旱对花生生长发育及收获产量的影响相对较大,该生育时期花生对土壤缺水比较敏感,易限制产量的形成。
二、不同生育时期干旱处理对夏花生生长发育的影响(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、不同生育时期干旱处理对夏花生生长发育的影响(论文提纲范文)
(1)小麦套种花生周年协同高效施肥的理论基础与技术研究(论文提纲范文)
符号说明 |
中文摘要 |
Abstract |
1 前言 |
1.1 目的意义 |
1.2 国内外研究现状 |
1.2.1 间套作研究进展 |
1.2.2 花生施肥研究进展 |
2 材料与方法 |
2.1 试验设计 |
2.2 测定内容与方法 |
2.2.1 叶绿素含量 |
2.2.2 气体交换参数 |
2.2.3 叶绿素荧光参数测定 |
2.2.4 快速叶绿素荧光动力学曲线 |
2.2.5 JIP-test分析 |
2.2.6 干物质积累量与养分含量 |
2.2.7 ~(15)N丰度值测定 |
2.2.8 NH~+_4-N和 NO~-_3-N含量的测定 |
2.2.9 根系活力 |
2.2.10 硝酸还原酶活性 |
2.2.11 叶片衰老特性 |
2.2.12 籽仁品质 |
2.2.13 产量测定 |
2.2.14 土壤温室气体排放测定 |
2.3 数据处理与方差分析 |
3 结果与分析 |
3.1 不同肥料运筹对麦套花生生理特性及产量形成的影响 |
3.1.1 叶片光合生理特性 |
3.1.2 叶绿素荧光特性 |
3.1.3 叶片衰老特性 |
3.1.4 产量形成 |
3.2 控释复合肥对麦套花生光系统II性能及产量和品质的调控效应 |
3.2.1 叶片光合特性 |
3.2.2 叶片光系统Ⅱ(PSⅡ)特性 |
3.2.3 产量及其构成因素 |
3.2.4 籽仁品质 |
3.3 不同施肥措施对麦套花生周年氮素利用的影响 |
3.3.1 小麦花生周年氮素吸收、氮素收获指数和表观回收效率 |
3.3.2 不同施肥措施对小麦花生周年氮素吸收效率的影响 |
3.3.3 不同施肥措施对小麦花生周年土壤氮素平衡的影响 |
3.3.4 产量及其构成因素 |
3.4 不同肥料运筹对麦套花生周年温室气体排放的影响 |
3.4.1 土壤养分以及周年温室气体排放 |
3.4.2 GWP和 GHGI |
4 讨论 |
4.1 不同肥料运筹对麦套花生生理特性及周年氮素吸收利用的影响 |
4.1.1 叶片光合特性 |
4.1.2 叶片衰老特性 |
4.1.3 根系活力硝酸还原酶活性 |
4.1.4 氮素积累与分配 |
4.1.5 麦套花生周年产量 |
4.2 控释复合肥对麦套花生光系统Ⅱ性能及产量和品质的调控效应 |
4.2.1 光系统Ⅱ性能 |
4.2.2 花生籽仁品质 |
4.3 氮素利用效率 |
4.3.1 花生各生育时期氮素吸收来源于肥料的比例以及在各器官的分布 |
4.3.2 周年氮素平衡 |
4.4 周年土壤温室气体排放 |
4.4.1 不同肥料运筹对CO_2排放通量的影响 |
4.4.2 不同肥料运筹对N_2O排放通量的影响 |
4.4.3 控释复合肥对CO_2排放通量的影响 |
4.4.4 控释复合肥对N_2O排放通量的影响 |
4.4.5 产量、GWP和GHGI |
5 结论 |
5.1 不同肥料运筹对麦套花生生理特性的影响 |
5.2 控释复合肥对PSII性能和籽仁品质的影响 |
5.3 氮素利用效率 |
5.4 周年温室气体排放 |
参考文献 |
致谢 |
攻读学位期间发表论文情况 |
(2)水分胁迫影响糯玉米产量形成的生理机制研究(论文提纲范文)
中文摘要 |
Abstract |
缩略词 |
第一章 文献综述 |
1 国内外研究现状 |
2 研究目的与意义 |
3 参考文献 |
第二章 水分胁迫对糯玉米籽粒产量及物质转运的影响 |
1 前言 |
2 材料与方法 |
2.1 试验设计 |
2.2 测定指标与方法 |
2.3 数据处理 |
3 结果与分析 |
3.1 水分胁迫对糯玉米产量及其构成因素的影响 |
3.2 水分胁迫对糯玉米籽粒粒重的影响 |
3.3 水分胁迫对糯玉米籽粒中水分含量的影响 |
3.4 水分胁迫对糯玉米物质转运的影响 |
4 讨论 |
5 参考文献 |
第三章 水分胁迫对糯玉米叶片光合特性的影响 |
1 前言 |
2 材料与方法 |
2.1 试验设计 |
2.2 测定指标与方法 |
2.3 数据处理 |
3 结果与分析 |
3.1 水分胁迫对糯玉米叶片含水量的影响 |
3.2 水分胁迫对糯玉米叶片光合色素的影响 |
3.3 水分胁迫对糯玉米叶片光合参数的影响 |
3.4 水分胁迫对糯玉米叶片叶绿素荧光参数的影响 |
3.5 产量与光合特性参数的相关性 |
4 讨论 |
5 参考文献 |
第四章 水分胁迫对糯玉米抗氧化系统和渗透调节物质的影响 |
1 前言 |
2 材料与方法 |
2.1 试验设计 |
2.2 测定指标与方法 |
2.3 数据处理 |
3 结果与分析 |
3.1 水分胁迫对糯玉米籽粒抗氧化酶和渗透调节物质的影响 |
3.2 水分胁迫对糯玉米叶片抗氧化酶和渗透调节物质的影响 |
3.3 产量与抗氧化酶、渗透调节物质的相关性 |
4 讨论 |
5 参考文献 |
第五章 水分胁迫对糯玉米内源激素含量的影响 |
1 前言 |
2 材料与方法 |
2.1 试验设计 |
2.2 测定指标与方法 |
2.3 数据处理 |
3 结果与分析 |
3.1 水分胁迫对糯玉米籽粒内源激素含量的影响 |
3.2 水分胁迫对糯玉米叶片内源激素的影响 |
3.3 产量与内源激素的相关性 |
4 讨论 |
5 参考文献 |
第六章 水分胁迫对糯玉米碳氮代谢的影响 |
1 前言 |
2 材料与方法 |
2.1 试验设计 |
2.2 测定指标与方法 |
2.3 数据处理 |
3 结果与分析 |
3.1 水分胁迫对糯玉米籽粒碳氮代谢的影响 |
3.2 水分胁迫对糯玉米叶片碳氮代谢的影响 |
3.3 产量与碳氮代谢的相关性 |
4 讨论 |
5 参考文献 |
第七章 主要结论、创新点及展望 |
1 主要研究结论 |
2 创新点 |
3 存在的不足及今后工作方向 |
攻读博士学位期间发表的学术论文目录 |
致谢 |
(3)正阳县气象因素变化特征及对夏花生生长的影响(论文提纲范文)
1 夏花生对气象条件的要求 |
1.1 苗期 |
1.2 开花下针、鼓粒及荚果期 |
1.3 成熟收获期 |
2 正阳县光、温、水等气象因素分析及对夏花生生长的影响 |
2.1 气温对夏花生生长的影响 |
2.2 降水对夏花生生长的影响 |
2.3 日照对夏花生生长的影响 |
3 花生常见病害与气象因素间的关系 |
3.1 叶斑病 |
3.2 青枯病 |
3.3 锈病 |
4 结语 |
(4)滴灌和根瘤菌施用对北疆花生生长及产量的影响(论文提纲范文)
摘要 |
abstract |
1 前言 |
1.1 花生生产状况 |
1.1.1 世界花生生产状况 |
1.1.2 中国花生生产状况 |
1.1.3 新疆花生生产状况 |
1.2 花生膜下滴灌的研究进展 |
1.2.1 膜下滴灌对花生生长发育的影响 |
1.2.2 膜下滴灌对花生生理特性的影响 |
1.2.3 膜下滴灌对花生产量和品质的影响 |
1.3 根瘤菌的作用及其对花生生长影响研究进展 |
1.3.1 根瘤菌的作用及其对干旱的响应 |
1.3.2 根瘤菌在花生和豆科作物生产上的应用研究 |
1.4 地膜覆盖和根瘤菌施用在豆科作物生产上的复合效果研究 |
1.5 本研究的目的与意义 |
2 材料与方法 |
2.1 试验地点 |
2.2 试验材料 |
2.3 试验设计 |
2.4 项目测定与方法 |
2.4.1 植株形态指标的测定 |
2.4.2 植株各器官干物质积累的测定 |
2.4.3 光合参数测定 |
2.4.4 植株根瘤相关指标的测定 |
2.4.5 氮、磷、钾含量测定 |
2.4.6 氮、磷、钾吸收量测定 |
2.4.7 产量及相关性状测定 |
2.4.8 经济效益计算 |
2.4.9 数据统计分析 |
3 结果与分析 |
3.1 滴灌、根瘤菌处理对花生形态特征影响 |
3.1.1 主茎高 |
3.1.2 侧枝长 |
3.2 滴灌、根瘤菌处理对花生光合能力的影响 |
3.2.1 叶面积指数 |
3.2.2 光合参数 |
3.3 滴灌、根瘤菌处理对花生干物质积累的影响 |
3.3.1 根干物质积累量 |
3.3.2 茎干物质积累量 |
3.3.3 叶干物质积累量 |
3.3.4 荚果干物质积累量 |
3.3.5 整株干物质积累量 |
3.4 滴灌、根瘤菌处理对花生各器官养分浓度的影响 |
3.4.1 花生各器官氮浓度影响 |
3.4.2 花生各器官磷浓度影响 |
3.4.3 花生各器官钾浓度影响 |
3.5 滴灌、根瘤菌处理对花生养分吸收量的影响 |
3.5.1 花生各器官氮素吸收量 |
3.5.2 花生各器官磷素吸收量 |
3.5.3 花生各器官钾素吸收量 |
3.6 滴灌、根瘤菌处理对花生产量及相关性状的影响 |
3.6.1 产量及其产量构成因素的影响 |
3.6.2 经济效益分析 |
4.结论与讨论 |
4.1 讨论 |
4.1.1 膜下滴灌和根瘤菌施用对花生生长发育的效果评价 |
4.1.2 膜下滴灌和根瘤菌施用对花生养分吸收利用的效果评价 |
4.1.3 膜下滴灌和根瘤菌施用对花生产量形成及经济效益的效果评价 |
4.2 结论 |
参考文献 |
致谢 |
(5)钾素对花生生育特性及产量品质的影响(论文提纲范文)
摘要 |
Abstract |
1 前言 |
1.1 研究背景 |
1.2 国内外研究进展 |
1.2.1 钾素与生长发育的关系 |
1.2.2 钾素与根瘤特性的关系 |
1.2.3 钾素与光合作用的关系 |
1.2.4 钾素与干物质积累的关系 |
1.2.5 钾素与养分代谢的关系 |
1.2.6 钾素与产量品质的关系 |
1.3 本试验的目的与意义 |
2 材料与方法 |
2.1 试验材料 |
2.2 试验设计 |
2.3 测定项目与方法 |
2.3.1 花生形态测定 |
2.3.2 花生根瘤特性测定 |
2.3.3 花生光合特性的测定 |
2.3.4 花生干物质积累的测定 |
2.3.5 花生养分吸收的测定 |
2.3.6 花生产量及产量构成因素的测定 |
2.3.7 花生籽仁品质的测定 |
2.4 数据统计分析 |
3 结果与分析 |
3.1 钾素对花生形态的影响 |
3.1.1 钾素对花生主茎高的影响 |
3.1.2 钾素对花生侧枝长的影响 |
3.1.3 钾素对花生叶面积指数(LAI)的影响 |
3.1.4 钾素对花生根系形态的影响 |
3.2 钾素对花生根瘤特性的影响 |
3.2.1 钾素对花生根瘤数量的影响 |
3.2.2 钾素对花生根瘤干重的影响 |
3.2.3 钾素对花生根瘤超微结构的影响 |
3.3 钾素对花生光合特性的影响 |
3.3.1 钾素对花生叶片叶绿素含量的影响 |
3.3.2 钾素对花生光合参数的影响 |
3.3.3 钾素对花生光响应曲线的影响 |
3.3.4 钾素对花生群体光合势(LAD)的影响 |
3.4 钾素对花生干物质积累的影响 |
3.4.1 钾素对花生生育过程中干物质积累的影响 |
3.4.2 钾素对花生各生育时期干物质积累的影响 |
3.5 钾素对花生养分吸收的影响 |
3.5.1 钾素对花生氮素养分吸收的影响 |
3.5.2 钾素对花生磷素养分吸收的影响 |
3.5.3 钾素对花生钾素养分吸收的影响 |
3.6 钾素对花生产量构成因素及产量的影响 |
3.6.1 钾素对花生产量构成因素的影响 |
3.6.2 钾素对花生产量的影响 |
3.7 钾素对花生籽仁品质的影响 |
3.7.1 钾素对花生籽仁脂肪含量及脂肪酸组分的影响 |
3.7.2 钾素对花生籽仁蛋白质含量及氨基酸组分的影响 |
4 结论与讨论 |
4.1 讨论 |
4.1.1 钾素对花生形态的影响 |
4.1.2 钾素对花生根瘤特性的影响 |
4.1.3 钾素对花生光合特性的影响 |
4.1.4 钾素对花生干物质积累的影响 |
4.1.5 钾素对花生养分吸收的影响 |
4.1.6 钾素对花生产量构成因素及产量的影响 |
4.1.7 钾素对花生籽仁品质的影响 |
4.2 结论 |
参考文献 |
致谢 |
硕士期间发表论文 |
(6)水氮管理对花生产量、水氮利用及农田碳平衡的影响(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 研究背景与意义 |
1.1.1 研究花生的背景与意义 |
1.1.2 研究花生节水灌溉的背景与意义 |
1.1.3 研究花生高效氮管理的背景与意义 |
1.1.4 研究花生农田碳平衡的背景与意义 |
1.2 国内外研究现状分析 |
1.2.1 水氮管理对作物生长的影响 |
1.2.2 水氮管理对作物碳氮积累的影响 |
1.2.3 水氮管理对农田碳平衡的影响 |
1.2.4 水氮管理对水氮利用及产量的影响 |
1.3 主要研究内容及技术路线 |
1.3.1 研究内容 |
1.3.2 技术路线 |
第二章 材料与方法 |
2.1 试验区概况 |
2.2 试验设计 |
2.3 测定项目及方法 |
2.3.1 生长状况及干物质测定 |
2.3.2 植株的全氮和全碳测定 |
2.3.3 花生碳氮比计算公式 |
2.3.4 土壤含水量 |
2.3.5 土壤CO2通量的测定 |
2.3.6 产量测定 |
2.4 数据统计与分析 |
第三章 结果与分析 |
3.1 水氮管理对花生生长和干物质积累的影响 |
3.1.1 水氮管理对花生生长的影响 |
3.1.2 水氮管理对花生干物质积累量的影响 |
3.1.3 水氮管理对花生产量及产量构成的影响 |
3.1.4 水氮管理下花生荚果的碳氮来源 |
3.2 水氮管理对花生碳氮积累的影响 |
3.2.1 水氮管理对花生叶片碳含量的影响 |
3.2.2 水氮管理对花生叶片氮含量的影响 |
3.2.3 水氮管理对花生叶片碳氮比(C/N)影响 |
3.2.4 水氮管理对花生茎部碳含量的影响 |
3.2.5 水氮管理对花生茎部氮含量的影响 |
3.2.6 水氮管理对花生茎部碳氮比(C/N)的影响 |
3.2.7 水氮管理对氮利用影响 |
3.3 水氮管理对农田碳平衡的影响 |
3.3.1 水氮管理对花生植株固碳量的影响 |
3.3.2 水氮管理对土壤CO2通量的影响 |
3.3.3 水氮管理对土壤CO2排放量的影响 |
3.3.4 水氮管理对农田净生碳系统生产力的影响 |
3.4 水氮管理对花生水分利用的影响 |
第四章 结论与建议 |
4.1 结论 |
4.2 建议 |
参考文献 |
致谢 |
攻读学位论文期间发表文章 |
(7)不同腐植酸肥对花生生长和产量的调控效应(论文提纲范文)
中文摘要 |
Abstract |
1 前言 |
1.1 目的与意义 |
1.2 国内外发展现状及发展动态分析 |
1.2.1 腐植酸的概念与分类 |
1.2.2 施用腐植酸对土壤理化性质的影响 |
1.2.3 腐植酸对肥料增效效果 |
1.2.4 腐植酸肥对作物根系形态与养分积累的影响 |
1.2.5 腐植酸肥对植物生长发育的影响 |
1.2.6 腐植酸肥对作物产量和品质的影响 |
1.3 研究内容 |
2 材料与方法 |
2.1 试验地概况 |
2.2 试验材料 |
2.2.1 供试品种 |
2.2.2 供试肥料 |
2.3 试验设计 |
2.3.1 试验处理 |
2.3.2 试验实施情况 |
2.3.3 测定项目及方法 |
2.4 数据处理与分析 |
3 结果与分析 |
3.1 不同处理对春花生生长发育及产量品质的影响 |
3.1.1 不同腐植酸肥处理对植株农艺性状的影响 |
3.1.2 不同腐植酸肥处理对干物质积累动态的影响 |
3.1.3 不同腐植酸肥处理对地上部养分积累量的影响 |
3.1.4 不同腐植酸肥处理对荚果性状的影响 |
3.1.5 不同腐植酸肥处理对产量的影响 |
3.1.6 不同腐植酸肥处理对春花生籽仁品质的影响 |
3.2 不同处理对夏花生生长发育及产量的影响 |
3.2.1 不同腐植酸肥处理对植株农艺性状的影响 |
3.2.2 不同腐植酸肥处理对产量的影响 |
4 讨论 |
4.1 不同腐植酸肥处理对花生生长发育的影响 |
4.2 不同腐植酸肥处理对花生干物质积累的影响 |
4.3 不同腐植酸肥处理对花生养分积累的影响 |
4.4 不同腐植酸肥处理对花生产量的影响 |
5 结论 |
参考文献 |
致谢 |
(8)覆盖模式对不同旱作区农田土壤主要性状和玉米生长的影响(论文提纲范文)
摘要 |
ABSTRACT |
第一章 前言 |
1.1 研究背景 |
1.2 国内外研究进展 |
1.2.1 地表覆盖技术的应用与发展 |
1.2.2 地表覆盖对土壤水温的影响 |
1.2.3 地表覆盖对土壤碳氮养分的影响 |
1.2.4 地表覆盖对土壤微生物群落的影响 |
1.2.5 地表覆盖对作物生长发育和产量的影响 |
1.3 研究中需进一步解决的问题 |
1.4 研究的目的和意义 |
1.5 研究内容和技术路线 |
1.5.1 研究内容 |
1.5.2 技术路线 |
第二章 材料与方法 |
2.1 试验区概况 |
2.1.1 试验地自然概况 |
2.1.2 试验区2015-2017年的降水和气温分布 |
2.2 试验设计 |
2.2.1 半干旱区不同覆盖种植模式试验 |
2.2.2 半湿润区不同覆盖种植模式试验 |
2.3 测定项目及方法 |
2.3.1 土壤水分 |
2.3.2 休闲期降水储存率 |
2.3.3 土壤温度 |
2.3.4 土壤碳氮及其组分 |
2.3.5 土壤微生物多样性 |
2.3.6 玉米产量与生物量 |
2.3.7 水分利用效率 |
2.4 数据分析 |
2.4.1 土壤理化性质和玉米生长指标的数据分析 |
2.4.2 土壤微生物的数据分析 |
第三章 不同覆盖模式对农田土壤水温的影响 |
3.1 土壤温度 |
3.1.1 生育期0-25cm平均土壤温度的动态变化 |
3.1.2 生育前期0-25cm不同土层土壤温度的日变化 |
3.1.3 生育期0-25cm土壤积温 |
3.2 休闲期保墒效应 |
3.2.1 休闲期前后0-2m土壤含水量剖面图 |
3.2.2 休闲期0-2m土壤储水量和降水储存率 |
3.3 生育期土壤水分变化 |
3.3.1 生育期土壤含水量时空变化 |
3.3.2 生育期0-2m土壤储水量动态变化 |
3.3.3 生育期玉米农田总耗水量 |
3.4 讨论 |
3.4.1 土壤温度 |
3.4.2 土壤水分 |
3.5 小结 |
第四章 连续覆盖条件下的土壤碳氮变化 |
4.1 土壤有机碳、全氮和C/N的变化 |
4.1.1 土壤有机碳和全氮的动态变化 |
4.1.2 土壤有机碳和全氮的空间变化 |
4.1.3 土壤碳氮比的变化 |
4.2 土壤可溶性碳氮组分的变化 |
4.2.1 可溶性有机碳 |
4.2.2 可溶性有机氮 |
4.3 土壤硝态氮和铵态氮的变化 |
4.3.1 硝态氮 |
4.3.2 铵态氮 |
4.4 讨论 |
4.5 小结 |
第五章 连续覆盖对土壤微生物群落结构的影响 |
5.1 土壤微生物多样性 |
5.1.1 细菌多样性 |
5.1.2 真菌多样性 |
5.2 土壤微生物群落结构 |
5.2.1 细菌群落组成及结构 |
5.2.2 真菌群落组成及结构 |
5.3 土壤微生物群落变化与土壤理化性质的关系 |
5.3.1 细菌群落变化与土壤理化性质的关系 |
5.3.2 真菌群落变化与土壤理化性质的关系 |
5.4 讨论 |
5.4.1 农田覆盖对土壤微生物多样性有显着影响 |
5.4.2 农田覆盖改变了土壤微生物群落结构 |
5.5 小结 |
第六章 不同覆盖模式对玉米生长发育的影响 |
6.1 生育进程 |
6.2 株高与茎粗 |
6.3 叶面积指数 |
6.4 干物质积累 |
6.4.1 玉米各生育时期干物质积累的动态变化 |
6.4.2 农田覆盖对干物质转运与分配的影响 |
6.5 讨论 |
6.6 小结 |
第七章 不同覆盖模式对玉米产量和水分利用效率的影响 |
7.1 产量及相关性状 |
7.1.1 秃尖长、穗长和穗粗 |
7.1.2 百粒重、穗粒数和空秆率 |
7.1.3 籽粒产量和收获指数 |
7.2 水分利用效率 |
7.3 经济效益 |
7.4 产量、水分利用效率和经济效益与土壤特性的相关分析 |
7.4.1 产量等指标与土壤理化性质的相关性 |
7.4.2 产量等指标与土壤微生物性状的相关性 |
7.5 讨论 |
7.6 小结 |
第八章 结论与展望 |
8.1 主要结论 |
8.2 创新点 |
8.3 研究展望 |
参考文献 |
致谢 |
个人简历 |
(9)麦秸覆盖对土壤理化性质及夏花生生长发育的影响(论文提纲范文)
1 材料与方法 |
1.1 材料 |
1.2 试验设计 |
1.3 测定项目与方法 |
1.3.1 土壤物理性状 |
1.3.2 土壤酶活性 |
1.3.3 花生营养生长特性 |
1.3.4 花生生殖生长特性 |
1.3.5 产量及品质性状 |
1.4 数据处理 |
2 结果与分析 |
2.1 不同处理对土壤物理性状的影响 |
2.2 不同处理对土壤酶活性的影响 |
2.3 不同处理对花生营养生长的影响 |
2.4 不同处理对花生生殖生长的影响 |
2.5 不同处理对花生产量的影响 |
2.6 不同处理对花生品质的影响 |
3 讨论 |
4 结论 |
(10)不同干旱胁迫对花生生长发育及产量的影响(论文提纲范文)
0 引 言 |
1 材料与方法 |
1.1 材 料 |
1.2 方 法 |
1.3 数据处理 |
2 结果与分析 |
2.1 不同干旱处理对花生生育期的影响 |
2.2 不同干旱处理对花生株高的影响 |
2.3 不同干旱处理对花生叶面积系数变化影响 |
2.4 不同干旱处理对花生地上部干物质重影响 |
2.5 不同干旱处理对花生荚果干重变化影响 |
2.6 不同干旱处理对花生产量及其构成因素影响 |
3 讨 论 |
4 结 论 |
四、不同生育时期干旱处理对夏花生生长发育的影响(论文参考文献)
- [1]小麦套种花生周年协同高效施肥的理论基础与技术研究[D]. 刘兆新. 山东农业大学, 2021(01)
- [2]水分胁迫影响糯玉米产量形成的生理机制研究[D]. 叶玉秀. 扬州大学, 2021(02)
- [3]正阳县气象因素变化特征及对夏花生生长的影响[J]. 孙瑞. 种业导刊, 2021(02)
- [4]滴灌和根瘤菌施用对北疆花生生长及产量的影响[D]. 闫建峰. 沈阳农业大学, 2020(04)
- [5]钾素对花生生育特性及产量品质的影响[D]. 刘娜. 沈阳农业大学, 2020(08)
- [6]水氮管理对花生产量、水氮利用及农田碳平衡的影响[D]. 黄旭. 沈阳农业大学, 2020(08)
- [7]不同腐植酸肥对花生生长和产量的调控效应[D]. 张婉. 山东农业大学, 2020(01)
- [8]覆盖模式对不同旱作区农田土壤主要性状和玉米生长的影响[D]. 黄方园. 西北农林科技大学, 2020(01)
- [9]麦秸覆盖对土壤理化性质及夏花生生长发育的影响[J]. 张俊,刘娟,臧秀旺,郝西,汤丰收,董文召,齐飞艳,刘华. 土壤通报, 2019(03)
- [10]不同干旱胁迫对花生生长发育及产量的影响[J]. 石必显,林明,顾元国,贾东海,侯献飞,苏君红,于伯成,李强. 新疆农业科学, 2019(03)