基于高光谱成像技术的滩羊肉新鲜度快速检测研究

基于高光谱成像技术的滩羊肉新鲜度快速检测研究

论文摘要

滩羊肉的新鲜度是其品质安全的一个重要衡量指标,也是肉品品质安全控制的关键环节。挥发性盐基氮(TVB-N)是表征肉品腐败过程主要的化学信息,能有效地评价出滩羊肉的新鲜度。然而, TVB-N的传统检测过程繁琐且人为影响因素大,检测结果缺乏客观性和一致性,不能满足当今肉品检测过程无损、快速、高效的需求。高光谱成像技术符合现代检测技术向多源信息融合方向发展的需求,已在食品安全领域得到广泛应用。利用可见/近红外高光谱成像技术(400~1 000 nm)结合动力学和化学计量学方法以及计算机编程技术,将同时实现滩羊肉贮存期内(15℃环境)TVB-N浓度的快速检测和贮藏期的预测。研究中提取每个样品感兴趣区域的平均光谱数据,选用蒙特卡洛算法剔除异常样本。采用X-Y共生距离(SPXY)法划分为校正集和预测集,分别选用多元散射校正(multiplicative scatter correction,MSC)、卷积平滑(savitzky-golay,SG)、标准变量变换(standard normalized variate,SNV)、归一化(normalization)、基线校准(baseline)五种方法对原始光谱数据进行预处理,优选出最佳预处理方法。采用竞争性自适应重加权法(campetitive adaptive reweighted sampling,CARS)和连续投影算法(successive projections algorithm,SPA)分别提取了21个和6个特征波长。为优化模型并提高其模型精度,采用SPA算法对CARS所选特征波长进行二次提取,优选出14个特征波长。基于所提取的特征波长建立TVB-N浓度的PLSR模型,优选出SNV-CARS-SPA-PLSR模型具有较高的预测能力(Rc2=0.88, RMSEC=2.51,Rp2=0.65, RMSEP=2.11)。同时,建立了滩羊肉TVB-N变化与贮藏时间的动力学模型,并将优化后的光谱模型和动力学反应模型相结合建立了滩羊肉光谱吸光度值与贮藏时间的高光谱动力学模型,实现对贮藏时间的预测,并通过PLS-DA判别模型对滩羊肉贮藏时间进行判别分析(校正集判别准确率为100%,预测集为97%)。研究表明,利用可见/近红外高光谱成像技术结合动力学和化学计量学方法以及计算机编程技术,可以有效地实现滩羊肉品质智能监控与质量安全快速无损分析,为开发实时在线检测装备提供理论参考。

论文目录

  • 引 言
  • 1 实验部分
  •   1.1 可见/近红外高光谱系统构成及数据采集
  •   1.2 样本采集
  •   1.3 挥发性盐基氮 (TVB-N) 浓度测定
  •   1.4 滩羊肉TVB-N光谱与动力学模型的建立与评价
  • 2 结果与讨论
  •   2.1 异常值剔除
  •   2.2 光谱预处理与模型的建立
  •   2.3 特征波长的优选
  •     2.3.1 CARS提取特征波长
  •     2.3.2 SPA算法选取特征波长
  •       (1) SPA 算法选取特征波长
  •       (2) CARS-SPA 优选特征波长
  •   2.4 光谱动力学模型预测贮藏时间
  •   2.5 滩羊肉贮藏时间判别模型的建立与分析
  • 3 结 论
  • 文章来源

    类型: 期刊论文

    作者: 张晶晶,刘贵珊,任迎春,苏文浩,康宁波,马超

    关键词: 可见,近红外高光谱,动力学模型,判别模型,新鲜度,化学计量学

    来源: 光谱学与光谱分析 2019年06期

    年度: 2019

    分类: 基础科学,工程科技Ⅰ辑

    专业: 化学,轻工业手工业

    单位: 宁夏大学农学院,宁夏大学土木与水利工程学院,宁夏大学物理与电子电气工程学院

    基金: 宁夏高等学校科学技术研究项目(优秀青年教师培育基金项目)(NGY2016076),国家自然科学基金项目(地区项目)(31760435)资助

    分类号: O657.3;TS251.53

    页码: 1909-1914

    总页数: 6

    文件大小: 2389K

    下载量: 404

    相关论文文献

    • [1].高光谱成像技术在农产品检测中的应用[J]. 农家参谋 2020(08)
    • [2].序言[J]. 遥感学报 2020(04)
    • [3].基于高光谱成像技术预测牡蛎干制加工过程中的水分含量[J]. 中国食品学报 2020(07)
    • [4].第五届高光谱成像技术及应用研讨会征文通知[J]. 红外 2020(06)
    • [5].基于高光谱成像快速检测牛肉糜中大豆分离蛋白掺入量[J]. 食品工业科技 2020(20)
    • [6].基于高光谱成像技术的艺术品鉴定研究[J]. 文物保护与考古科学 2018(03)
    • [7].高光谱成像技术在农业中的应用概述[J]. 浙江农业科学 2017(07)
    • [8].高光谱成像技术在食品品质无损检测中的应用[J]. 食品工业科技 2016(03)
    • [9].粮油品质安全高光谱成像检测技术的研究进展[J]. 光谱学与光谱分析 2016(11)
    • [10].高光谱成像技术在水果无损检测中的应用[J]. 农机化研究 2015(07)
    • [11].基于高光谱成像技术的牛羊肉品质无损检测研究进展[J]. 新疆农垦科技 2015(06)
    • [12].人工智能和工业4.0视域下高光谱成像技术融合深度学习方法在中药领域中的应用与展望[J]. 中国中药杂志 2020(22)
    • [13].无人机载高光谱成像系统识别沥青路面血液痕迹研究[J]. 刑事技术 2020(04)
    • [14].近红外高光谱成像用于伊斯兰纸的定量化学分析[J]. 文物保护与考古科学 2020(05)
    • [15].浅谈高光谱成像技术在显现消褪字迹中的应用[J]. 法制与社会 2019(01)
    • [16].高光谱成像与应用技术发展[J]. 计测技术 2019(04)
    • [17].高光谱成像技术在农业中的应用概述[J]. 时代农机 2018(06)
    • [18].采后葡萄可溶性固形物含量的高光谱成像检测研究[J]. 河南农业科学 2017(03)
    • [19].高光谱成像技术在茶叶中的应用研究进展[J]. 核农学报 2016(07)
    • [20].高光谱成像技术在水果多品质无损检测中的应用[J]. 农业科技与装备 2016(05)
    • [21].高光谱成像技术下水果内外品质无损检测研究进展[J]. 科技经济导刊 2016(17)
    • [22].利用高光谱成像技术检测长枣表面虫伤[J]. 电子制作 2013(21)
    • [23].高光谱成像技术在肉品无损检测中的应用及进展[J]. 河南工业大学学报(自然科学版) 2014(01)
    • [24].高光谱成像技术在果蔬品质与安全无损检测中的原理及应用[J]. 光谱学与光谱分析 2014(10)
    • [25].农产品外部品质无损检测中高光谱成像技术的应用研究进展[J]. 黑龙江科技信息 2014(27)
    • [26].农产品无损检测中高光谱成像技术的应用研究[J]. 农机化研究 2013(06)
    • [27].高光谱成像在食品质量评估方面的研究进展与应用(一)[J]. 肉类研究 2012(04)
    • [28].高光谱成像在食品质量评估方面的研究进展与应用(二)[J]. 肉类研究 2012(05)
    • [29].农产品外部品质无损检测中高光谱成像技术的应用研究进展[J]. 光谱学与光谱分析 2011(08)
    • [30].果蔬品质高光谱成像无损检测研究进展[J]. 激光与红外 2010(06)

    标签:;  ;  ;  ;  ;  ;  

    基于高光谱成像技术的滩羊肉新鲜度快速检测研究
    下载Doc文档

    猜你喜欢