基于光子轨道角动量腔增强自发参量下转换系统的实验研究

基于光子轨道角动量腔增强自发参量下转换系统的实验研究

论文摘要

近二十年来,随着量子信息科学在全球广泛而飞速的发展,光学量子信息处理作为量子信息科学的一个重要分支领域,逐渐成为国际上研究热点之一。目前,制约光学量子信息处理实验研究的一个重要瓶颈是提高可操作的纠缠光子的数目和实现多光子纠缠的量子存储,它们直接影响到光学量子信息处理的可扩展性。基于传统的自发参量下转换方法产生的光子线宽过高(100GHz-1THz),在实现独立光源之间的干涉,以及基于原子系综、固态体系的量子存储中遇到困难,腔增强的自发参量下转换方法便应运而生。该方法能够控制光子的线宽,制备出窄线宽(1OMHz-100MHz)的多光子纠缠,很好地解决了线宽过宽的问题,在远程量子通信、光学量子计算、杂化量子网络等方面有着重要的应用价值。在提升可操纵的纠缠光子的数目方面,目前,实验上制备十光子纠缠态已经逐渐接近瓶颈,如果想大幅度提升纠缠量子比特的数目,必须依靠实验方法上的突破。众所周知,光子具有轨道角动量,表征轨道角动量的量子数能够取任意整数,使得单光子的轨道角动量原理上能构成无穷维的希尔伯特空间,到目前为止,实验上已经陆续实现了基于轨道角动量的高维量子纠缠态以及相关的应用。本文是针对部分基于光子轨道角动量的腔增强自发参量下转化系统的研究,重点在以下三个方面:(1)我们采用光场的相位调制和Pound-Drever-Hall(PDH)稳频技术实现了Fabry-Perot(F-P)干涉仪的稳定;(2)为实现周期极化磷酸氧钛钾(PPKTP)晶体准相位匹配的温度条件和精度要求,设计一个比例-积分-微分(PID)温度控制系统,控制温度范围5-55℃、稳定性达到0.003℃内,满足了实验要求;(3)自制了标准具,通过PID温度控制系统实现标准具的温度控制,获得稳定输出的光场。

论文目录

  • 摘要
  • Abstract
  • 第一章 绪论
  •   1.1 研究背景
  •   1.2 腔增强SPDC方法进展
  •   1.3 光子轨道角动量简述
  •   1.4 论文结构安排
  • 第二章 腔增强SPDC方法
  •   2.1 PPKTP晶体参数和特性
  •   2.2 SPDC过程
  •   2.3 准相位匹配技术
  •   2.4 腔增强效应
  •     2.4.1 双共振参量震荡
  •     2.4.2 腔增强SPDC方法
  •     2.4.3 实验方案
  •   2.5 本章小结
  • 第三章 高精度温度控制系统
  •   3.1 引言
  •   3.2. PID控制
  •     3.2.1 PID控制原理
  •     3.2.2 PID参数
  •   3.3 温控系统
  •     3.3.1 LFI-3751温度控制器
  •     3.3.2 热敏电阻
  •     3.3.3 热电制冷片
  •     3.3.4 温控系统实验搭建
  •   3.4 实验数据分析
  •     3.4.1 准相位匹配过程温控分析
  •     3.4.2 F-P滤波腔的测试分析
  •     3.4.3 总结
  • 第四章 PDH稳频控制系统
  •   4.1 引言
  •   4.2 PDH稳频控制原理
  •   4.3 光外差检测技术
  •   4.4 分析小结
  • 第五章 总结与展望
  • 参考文献
  • 攻读硕士学位期间发表的论文
  • 致谢
  • 文章来源

    类型: 硕士论文

    作者: 王振凯

    导师: 张涵

    关键词: 腔增强,自发参量下转换,轨道角动量,温度控制,稳频,标准具

    来源: 南京大学

    年度: 2019

    分类: 基础科学

    专业: 物理学

    单位: 南京大学

    分类号: O431.2

    总页数: 52

    文件大小: 3061K

    下载量: 81

    相关论文文献

    • [1].携带时变轨道角动量的超快时空波包的产生(英文)[J]. Science Bulletin 2020(16)
    • [2].可重构轨道角动量天线的研究进展[J]. 电讯技术 2020(06)
    • [3].一种轨道角动量在大气湍流中的畸变补偿方法[J]. 中国新通信 2020(18)
    • [4].轨道角动量模式识别方法综述[J]. 物理实验 2019(02)
    • [5].光子轨道角动量在量子通信中的应用[J]. 电子技术与软件工程 2017(01)
    • [6].声波的“漩涡”——声学轨道角动量的产生、操控与应用[J]. 物理 2017(10)
    • [7].基于单光子轨道角动量态的量子匿名否决方案[J]. 南京邮电大学学报(自然科学版) 2016(04)
    • [8].轨道角动量光的区分[J]. 光学学报 2015(06)
    • [9].光子高阶轨道角动量制备、调控及传感应用研究进展[J]. 物理学报 2015(16)
    • [10].光子轨道角动量的应用与发展——记中山大学光电材料与技术国家重点实验室蔡鑫伦课题组及其研究学科[J]. 科学中国人 2016(34)
    • [11].声轨道角动量水下发射与数据传输实验[J]. 声学学报 2020(06)
    • [12].连续超表面:产生任意涡旋光[J]. 光电工程 2017(01)
    • [13].轨道角动量态复用通信研究[J]. 南京邮电大学学报(自然科学版) 2015(06)
    • [14].全光纤光子轨道角动量模式研究[J]. 华南师范大学学报(自然科学版) 2014(06)
    • [15].轨道角动量技术在无线通信中的应用[J]. 电信网技术 2013(09)
    • [16].基于光轨道角动量的光通信数据编码研究进展[J]. 量子电子学报 2008(04)
    • [17].光子飓风——具有光子横向轨道角动量的时空涡旋[J]. 物理 2020(04)
    • [18].基于毫米波和轨道角动量的下一代手机无线通信技术设计[J]. 电视技术 2019(03)
    • [19].单粒子散射对拉盖尔-高斯光束轨道角动量的影响[J]. 光学学报 2018(06)
    • [20].圆偏振可见光可改变光子轨道角动量[J]. 中国光学 2014(04)
    • [21].长周期多芯手征光纤轨道角动量的调制[J]. 物理学报 2019(06)
    • [22].非傍轴拉盖尔-高斯光束的轨道角动量密度特性[J]. 激光与光电子学进展 2017(03)
    • [23].光的自旋和轨道角动量[J]. 激光与光电子学进展 2014(10)
    • [24].聚合物中空环芯光纤中OAM模式传输的几何容差特性研究[J]. 光子学报 2020(06)
    • [25].目标物散射对轨道角动量的影响[J]. 工业控制计算机 2019(07)
    • [26].电磁波轨道角动量在无线通信中的应用[J]. 中国无线电 2019(08)
    • [27].光子轨道角动量纠缠实现量子存储[J]. 中国光学 2015(02)
    • [28].基于轨道角动量的循环差分相移量子密钥分发[J]. 光学学报 2019(02)
    • [29].一种携子阵轨道角动量天线的设计和传输研究[J]. 微型电脑应用 2019(03)
    • [30].光子轨道角动量传输光纤技术[J]. 光通信研究 2017(06)

    标签:;  ;  ;  ;  ;  ;  

    基于光子轨道角动量腔增强自发参量下转换系统的实验研究
    下载Doc文档

    猜你喜欢