基于阶跃的Laplacian人工粘性激波捕捉方法在高精度DG方法中的应用

基于阶跃的Laplacian人工粘性激波捕捉方法在高精度DG方法中的应用

论文摘要

本文发展了一种新的基于网格单元交界面变量阶跃的高精度Laplacian人工粘性激波捕捉方法。根据量纲一致的原则,用界面处的守恒变量阶跃和单元内的压力探测器来构造人工粘性系数,该方法形式简单,可直接应用于非结构混合网格。数值试验表明,对于亚声速圆柱绕流问题,该方法适用于高阶曲网格,能有效保证解的精度。通过典型的一维和二维算例,考核了该激波捕捉方法的性能,对比了计算的收敛性,研究了该方法对光滑流场区域的影响。考核计算发现,该方法能够在有效抑制振荡的同时保证收敛性,对光滑区流场的污染较小。三维F4算例表明,该方法能应用于复杂外形,是一种切实可行的高精度间断处理方法。

论文目录

文章来源

类型: 国内会议

作者: 赵辉,张耀冰,陈江涛,龚小权,杨悦悦

关键词: 人工粘性,激波捕捉,高精度,方法,高阶曲网格

来源: 中国力学大会(CCTAM 2019) 2019-08-25

年度: 2019

分类: 基础科学

专业: 力学

单位: 中国空气动力研究与发展中心

分类号: O35

页码: 934-945

总页数: 12

文件大小: 1076k

下载量: 13

相关论文文献

  • [1].Gradient Estimates for p-Laplacian Lichnerowicz Equation on Noncompact Metric Measure Space[J]. Chinese Annals of Mathematics,Series B 2020(03)
  • [2].Equivalence Relation between Initial Values and Solutions for Evolution p-Laplacian Equation in Unbounded Space[J]. Communications in Mathematical Research 2020(01)
  • [3].Ordering Quasi-Tree Graphs by the Second Largest Signless Laplacian Eigenvalues[J]. Journal of Mathematical Research with Applications 2020(05)
  • [4].Existence of Solutions to Nonlinear Schr?dinger Equations Involving N-Laplacian and Potentials Vanishing at Infinity[J]. Acta Mathematica Sinica 2020(10)
  • [5].含偶圈图的Laplacian谱刻画[J]. 运筹学学报 2018(04)
  • [6].四阶p-Laplacian边值问题正解的存在性(英文)[J]. 数学季刊(英文版) 2018(04)
  • [7].The Existence of Semiclassical States for Some P-Laplacian Equation with Critical Exponent[J]. Acta Mathematicae Applicatae Sinica 2017(02)
  • [8].Soft Decision Based Gaussian-Laplacian Combination Model for Noisy Speech Enhancement[J]. Chinese Journal of Electronics 2018(04)
  • [9].具有奇性的Laplacian型方程周期正解的存在性[J]. 韩山师范学院学报 2016(06)
  • [10].Blow-up of p-Laplacian evolution equations with variable source power[J]. Science China(Mathematics) 2017(03)
  • [11].Solvability for a Coupled System of Fractional p-Laplacian Differential Equations at Resonance[J]. Communications in Mathematical Research 2017(01)
  • [12].The Existence of Nodal Solutions for the Half-Quasilinear p-Laplacian Problems[J]. Journal of Mathematical Research with Applications 2017(02)
  • [13].Coiflet solution of strongly nonlinear p-Laplacian equations[J]. Applied Mathematics and Mechanics(English Edition) 2017(07)
  • [14].Laplacian Energies of Regular Graph Transformations[J]. Journal of Donghua University(English Edition) 2017(03)
  • [15].Existence of Solutions to a p-Laplacian Equation with Integral Initial Condition[J]. Communications in Mathematical Research 2017(04)
  • [16].The Signless Laplacian Spectral Characterization of Strongly Connected Bicyclic Digraphs[J]. Journal of Mathematical Research with Applications 2016(01)
  • [17].Multiplicity for Nonlinear Elliptic Boundary Value Problems of p-Laplacian Type Without Ambrosetti-Rabinowitz Condition[J]. Acta Mathematicae Applicatae Sinica 2015(01)
  • [18].Existence of Solutions for a Four-point Boundary Value Problem with a p(t)-Laplacian[J]. Communications in Mathematical Research 2015(01)
  • [19].奇异Φ-Laplacian周期边值问题解的存在性[J]. 山东大学学报(理学版) 2015(08)
  • [20].单圈图的最小无号Laplacian谱展[J]. 华南师范大学学报(自然科学版) 2013(04)
  • [21].循环图的Laplacian谱展[J]. 数学杂志 2013(06)
  • [22].The Normalized Laplacian Spectrum of Pentagonal Graphs and Its Applications[J]. Journal of Mathematical Research with Applications 2019(04)
  • [23].Evolutionary p(x)-Laplacian Equation with a Convection Term[J]. Acta Mathematicae Applicatae Sinica 2019(03)
  • [24].Existence of Nonnegative Solutions for a Class of Systems Involving Fractional(p,q)-Laplacian Operators[J]. Chinese Annals of Mathematics,Series B 2018(02)
  • [25].一类p-Laplacian方程单侧全局区间分歧及应用[J]. 数学物理学报 2018(04)
  • [26].Energy and Laplacian of fractal interpolation functions[J]. Applied Mathematics:A Journal of Chinese Universities 2017(02)
  • [27].图的Normalized Laplacian多项式系数[J]. 集美大学学报(自然科学版) 2016(01)
  • [28].一类具有奇性p-Laplacian-Rayleigh方程的周期正解[J]. 韩山师范学院学报 2016(03)
  • [29].Homoclinic Solutions for a Prescribed Mean Curvature Lienard p-Laplacian Equation with a Deviating Argument[J]. Journal of Donghua University(English Edition) 2016(03)
  • [30].一类奇性的p-Laplacian-Rayleigh方程的周期正解的存在性[J]. 井冈山大学学报(自然科学版) 2016(04)

标签:;  ;  ;  ;  ;  

基于阶跃的Laplacian人工粘性激波捕捉方法在高精度DG方法中的应用
下载Doc文档

猜你喜欢