基于模糊神经网络PID的焙烘机温度控制

基于模糊神经网络PID的焙烘机温度控制

论文摘要

以控制焙烘机内流动的热风温度为目的,提出了将模糊控制器、神经网络控制器与PID相结合构成模糊神经网络PID对焙烘机进行温度控制的方法,并建立了模糊神经网络PID控制器的网络模型;利用MATLAB进行仿真分析,并与传统PID和模糊PID进行对比。结果表明:利用传统PID控制时,超调量达到45%,调节时间为1 150 s,且震荡明显;利用模糊PID控制时,系统超调量为15%,调节时间达到1 750 s,震荡明显减弱;利用模糊神经网络PID控制时,该方法满足焙烘机温度控制系统的各项技术指标要求,且超调量接近零,系统无震荡,调节时间减小为500 s,并且温度受外界扰动的影响很小,有良好的扰动补偿和抗干扰能力,系统鲁棒性有了很大提升,可以很好地满足控制焙烘机热风温度的目的。

论文目录

  • 1 控制系统总体设计
  • 2 模糊神经网络PID控制器设计
  •   2.1 模糊神经网络PID控制器工作原理
  •   2.2 模糊控制器设计
  •     2.2.1 模糊化
  •     2.2.2 模糊推理
  •     2.2.3 反模糊化
  •   2.3 模糊神经网络PID网络结构
  •     2.3.1 模式顺传播
  •     2.3.2 误差逆传播
  • 3 仿真分析
  • 4 结论
  • 文章来源

    类型: 期刊论文

    作者: 赵世海,韩雪

    关键词: 焙烘机,温度控制,模糊神经网络,鲁棒性

    来源: 天津工业大学学报 2019年04期

    年度: 2019

    分类: 工程科技Ⅰ辑,信息科技

    专业: 轻工业手工业,自动化技术

    单位: 天津工业大学机械工程学院,天津工业大学天津市现代机电装备技术重点实验室

    基金: 天津市科技支撑重点计划资助项目(15ZCDGX00840)

    分类号: TS190.4;TP273;TP183

    页码: 83-88

    总页数: 6

    文件大小: 2091K

    下载量: 652

    相关论文文献

    • [1].基于模糊聚类的二型模糊神经网络系统辨识[J]. 科学技术与工程 2020(04)
    • [2].一类变时滞模糊神经网络系统解的渐近概周期性(英文)[J]. 四川大学学报(自然科学版) 2020(02)
    • [3].基于改进模糊神经网络的电力通信性能预警方法研究[J]. 计算机与数字工程 2020(03)
    • [4].电动汽车再生制动模糊神经网络控制策略研究[J]. 电气传动 2020(07)
    • [5].基于模糊神经网络的人才甄选系统[J]. 软科学 2019(06)
    • [6].基于模糊神经网络的大数据价值评估研究[J]. 计算机产品与流通 2019(08)
    • [7].变系数高阶模糊神经网络的指数收敛性[J]. 暨南大学学报(自然科学与医学版) 2013(05)
    • [8].基于模糊神经网络的微博舆情趋势预测方法[J]. 情报科学 2017(12)
    • [9].基于模糊神经网络的大学生体质评价研究[J]. 物联网技术 2018(08)
    • [10].采煤机模糊神经网络故障诊断专家系统设计及实现[J]. 智库时代 2017(08)
    • [11].基于模糊神经网络算法的机器人路径规划研究[J]. 四川理工学院学报(自然科学版) 2014(06)
    • [12].模糊神经网络系统的设计与应用研究[J]. 辽宁工业大学学报(自然科学版) 2013(05)
    • [13].基于补偿模糊神经网络的灰循环系统控制研究[J]. 动力工程学报 2012(07)
    • [14].模糊神经网络的发展与应用[J]. 煤炭技术 2012(07)
    • [15].基于动态模糊神经网络的多余力矩抑制方法[J]. 哈尔滨工业大学学报 2012(10)
    • [16].模糊神经网络在股票价格预测中的应用[J]. 甘肃联合大学学报(自然科学版) 2011(03)
    • [17].动态模糊神经网络在变形预测中的应用[J]. 桂林理工大学学报 2011(03)
    • [18].基于模糊神经网络的热风炉温度控制仿真研究[J]. 铜陵学院学报 2011(05)
    • [19].应用自组织模糊神经网络估计卫星姿态系统执行机构故障[J]. 应用科学学报 2010(01)
    • [20].滑动窗与修剪技术的动态模糊神经网络方法研究[J]. 中山大学学报(自然科学版) 2010(01)
    • [21].基于动态模糊神经网络的生物工程算法研究[J]. 计算机工程与科学 2010(03)
    • [22].基于密度聚类补偿模糊神经网络的建模方法[J]. 科学技术与工程 2010(13)
    • [23].时滞系统的模糊神经网络补偿控制[J]. 浙江大学学报(工学版) 2010(07)
    • [24].模糊神经网络优化的研究[J]. 漳州师范学院学报(自然科学版) 2010(02)
    • [25].广义动态模糊神经网络及在轴承故障诊断中的应用[J]. 煤矿机械 2010(10)
    • [26].动态模糊神经网络在并联平台控制中的应用[J]. 系统仿真学报 2009(08)
    • [27].基于改进模糊神经网络的电力系统短期负荷预测[J]. 长春工程学院学报(自然科学版) 2009(01)
    • [28].基于聚类和文化算法的补偿模糊神经网络建模方法[J]. 华东理工大学学报(自然科学版) 2009(02)
    • [29].基于分级模糊神经网络的水电机组故障诊断[J]. 河海大学学报(自然科学版) 2009(03)
    • [30].基于补偿模糊神经网络的自主导向车路径规划[J]. 冶金设备 2009(03)

    标签:;  ;  ;  ;  

    基于模糊神经网络PID的焙烘机温度控制
    下载Doc文档

    猜你喜欢