论文摘要
为了保证自主水下航行器(AUV)能够精确潜入固定深度海域,AUV垂平面控制技术非常重要。在基于比例-积分-微分(PID)控制设计控制器的过程中,为保证控制器能够较好地控制AUV跟踪指定轨迹,需要对PID参数进行调整,但参数设定需要反复尝试,不仅耗费大量时间,而且不能保障其最优效果。为解决这一问题,提出了一种基于径向基函数(RBF)神经网络的参数自整定PID控制方法。首先建立AUV垂平面运动模型,然后设计RBF神经网络结构,基于梯度下降方法给出了RBF参数以及PID参数的迭代公式,并设计离散式PID控制器,最后通过数值仿真验证了所提方法的有效性。仿真结果说明,AUV可以在较短时间内达到指定深度,且PID各参数均能完成自整定。
论文目录
文章来源
类型: 期刊论文
作者: 杜度
关键词: 自主水下航行器,深度控制,径向基函数神经网络,比例积分微分控制,自整定
来源: 水下无人系统学报 2019年03期
年度: 2019
分类: 工程科技Ⅱ辑,信息科技
专业: 船舶工业,自动化技术
单位: 海军研究院
分类号: U664.82
页码: 284-289
总页数: 6
文件大小: 870K
下载量: 118
相关论文文献
标签:自主水下航行器论文; 深度控制论文; 径向基函数神经网络论文; 比例积分微分控制论文; 自整定论文;