基于支持向量机的钻井工况实时智能识别方法

基于支持向量机的钻井工况实时智能识别方法

论文摘要

钻井时效分析通常是依靠人工进行事后分析,具有主观性和随意性,不能及时准确地反映真实的现场情况。为了实时准确地对钻井工况进行自动判别,提高钻井效率,提出了一种基于支持向量机(SVM)的用数据驱动的钻井工况实时识别方法,建立了多个智能识别模型,并对其中的核函数进行分析比较,得出了模型参数的最优值。采用4口井的录井数据验证了模型的准确性,识别结果与实际工况基本一致,6种工况的识别正确率均达到95%以上。钻井时效分析与应用表明,钻井过程中应用工况识别结果,减少了不可见非生产时间。支持向量机实现了钻井工况的实时智能识别,提高了钻井时效,符合油田数字化和智能化发展的要求。

论文目录

  • 1 支持向量机模型
  • 2 工况识别模型优化
  •   2.1 核函数优选
  •   2.2 模型参数优选
  • 3 模型准确性验证
  • 4 钻井时效分析与应用
  • 5 结论
  • 文章来源

    类型: 期刊论文

    作者: 孙挺,赵颖,杨进,殷启帅,汪文星,陈缘

    关键词: 工况识别,支持向量机,数据驱动,时效分析

    来源: 石油钻探技术 2019年05期

    年度: 2019

    分类: 工程科技Ⅰ辑,信息科技

    专业: 石油天然气工业,自动化技术

    单位: 中国石油大学(北京)安全与海洋工程学院

    基金: 国家重点基础研究发展计划(“973”计划)项目“海洋深水油气安全高效钻完井基础研究”(编号:2015CB251202),中国石油大学(北京)引进人才科研启动基金“页岩气藏单井最终可采储量计算”(编号:2462017YJRC034)联合资助

    分类号: TP181;TE24

    页码: 28-33

    总页数: 6

    文件大小: 1173K

    下载量: 233

    相关论文文献

    • [1].基于人工鱼群算法的孪生支持向量机[J]. 智能系统学报 2019(06)
    • [2].基于改进支持向量机的温室大棚温度预测[J]. 科技创新与应用 2020(10)
    • [3].结构化支持向量机研究综述[J]. 计算机工程与应用 2020(17)
    • [4].支持向量机理论及应用[J]. 科学技术创新 2019(02)
    • [5].加权间隔结构化支持向量机目标跟踪算法[J]. 中国图象图形学报 2017(09)
    • [6].多分类孪生支持向量机研究进展[J]. 软件学报 2018(01)
    • [7].模糊型支持向量机及其在入侵检测中的应用[J]. 科技创新与应用 2018(11)
    • [8].从支持向量机到非平行支持向量机[J]. 运筹学学报 2018(02)
    • [9].支持向量机的基本理论和研究进展[J]. 长江大学学报(自科版) 2018(17)
    • [10].孪生支持向量机综述[J]. 计算机科学 2018(11)
    • [11].一种新的基于类内不平衡数据学习支持向量机算法[J]. 科技通报 2017(09)
    • [12].分段熵光滑支持向量机性能研究[J]. 计算机工程与设计 2015(08)
    • [13].有向无环图-双支持向量机的多类分类方法[J]. 计算机应用与软件 2015(11)
    • [14].基于支持向量机的股票价格预测模型研究与应用[J]. 课程教育研究 2016(28)
    • [15].灰狼优化的混合参数多分类孪生支持向量机[J]. 计算机科学与探索 2020(04)
    • [16].基于属性约简—光滑支持向量机的中小企业信息化评价研究[J]. 软件工程 2020(07)
    • [17].基于稀疏孪生支持向量机的人脸识别[J]. 信息技术 2020(07)
    • [18].基于总类内分布的松弛约束双支持向量机[J]. 济南大学学报(自然科学版) 2018(04)
    • [19].基于多分类支持向量机的评估模型研究[J]. 数学的实践与认识 2017(01)
    • [20].改进的支持向量机在微博热点话题预测中的应用[J]. 现代情报 2017(03)
    • [21].多核在线支持向量机算法研究及应用[J]. 宜宾学院学报 2017(06)
    • [22].基于改进遗传算法的支持向量机参数优化方法[J]. 计算机与现代化 2015(03)
    • [23].一种层次粒度支持向量机算法[J]. 小型微型计算机系统 2015(08)
    • [24].自训练半监督加权球结构支持向量机多分类方法[J]. 重庆邮电大学学报(自然科学版) 2014(03)
    • [25].四类基于支持向量机的多类分类器的性能比较[J]. 聊城大学学报(自然科学版) 2014(03)
    • [26].一种模糊加权的孪生支持向量机算法[J]. 计算机工程与应用 2013(04)
    • [27].一种采用粗糙集和遗传算法的支持向量机[J]. 山西师范大学学报(自然科学版) 2013(01)
    • [28].基于在线支持向量机的无人机航路规划技术[J]. 电光与控制 2013(05)
    • [29].贪婪支持向量机的分析及应用[J]. 计算机工程与应用 2012(24)
    • [30].一种改进的双支持向量机[J]. 辽宁石油化工大学学报 2012(04)

    标签:;  ;  ;  ;  

    基于支持向量机的钻井工况实时智能识别方法
    下载Doc文档

    猜你喜欢