论文摘要
股市中的行业轮动现象很早就引起了学术界和投资界的注意。特别是量化投资兴起后,行业轮动更是成为当前的研究热点。直觉上,行业轮动背后的驱动力最大的可能是实体行业盈利能力的变化,而实体行业利润的变化往往与整个宏观经济的波动有关。因此,研究者将宏观的经济周期与股票中的行业轮动现象联系起来,通过辨别各行业股票在经济周期各阶段的不同表现,寻找行业轮动现象背后的获利机会。本文系统、全面地研究了宏观、行业、股市三者之间的变化关系,检验上述直觉结论是否成立,并根据所得到的结论制定可行的投资策略,并进行回测以验证本文结论的正确性。在结构上,本文主要分成三个大部分。第一至第三章构成了第一部分,系统研究了经济周期、实体行业与行业轮动三者的关系。这部分的研究主要集中在宏观经济领域。第四章构成了第二部分,在整合第一部分重要研究结论的基础上,以动量和反转效应概念为节点,将经济周期与行业指数波动现象连接起来,并据此分析了行业轮动的真实原因。该部分内容通过对宏观经济领域研究结论的梳理,将研究进程过渡到证券市场领域,起着承上启下的作用。论文的第三部分由第五、六章构成。这部分内容围绕着构建行业轮动投资策略展开,目的在于通过对行业轮动投资策略的设计、执行、评测,探索行业轮动策略获利的可能性及效果。研究经济周期的文献较多,虽角度和方法各异,但在经济周期阶段的划分上,主流学者的观点却比较一致。当前经济周期阶段的主流划分主要有二分法和四分法。相较于四分法,二分法虽然略显粗糙,但扩张(紧缩)与紧缩(扩张)阶段之间的波峰(波谷)的识别方法简单且精度较高。本文首先使用二分法识别经济周期转点(即波峰或波谷),并在此基础上,借鉴美林投资时钟思路,按四分法划分经济周期。美林投资时钟在经济周期划分时,只考虑通胀和产出缺口两个因素,会引起内生性矛盾。为了克服该问题,在考虑通胀和产出缺口基础上,同时考虑二分法的结果和产出缺口符号,并引入宏观经济冲击概念对经济周期四分法的各阶段进行划分。在经济周期划分基础之上,第二章使用一致性指数衡量了GDP与各实体行业以及各实体行业之间的同步性。参与计算的行业总计75个,故共计可以得到C276(28)2850个一致性指数(含GDP)。依据一致性指数显著与否的判断,构建了宏观经济与各行业、各行业间的同步网络。从网络结果中可以看到,在经济系统内,实体行业与经济周期的同步关系具有非一致性、极化性和层次性,且不存在与GDP没有间接同步关系的行业,该结果表明经济系统作为一个整体,其子系统——行业与经济整体之间的联系是必然和多层次的。同样在经济周期划分的基础上,第三章对二级行业的行业因素与行业轮动、经济周期与行业轮动之间的关系进行了研究。首先,考察了行业总周转率与行业指数之间的协整关系。其次,构建了包含行业总周转率、行业指数、大盘指数、利率四个变量的SVAR模型,以克服大盘趋势、利率对当期行业指数的巨大影响。再次,对经济周期不同阶段中各行业指数收益率的表现情况进行了统计。研究结果显示,75个行业中,只有21个行业的行业总周转率与行业指数间存在协整关系,且只有少数行业周转率对行业指数的短期波动影响较大。依据不同行业在不同经济周期阶段的表现,可以将行业分为周期性行业和非周期性行业。作为过渡章节,第四章在梳理前文结果基础上,将研究视角由经济系统转向金融市场领域。当股票市场为弱式有效时,股票价格反映了所有的历史信息。虽然现有文献在我国股市是否达到弱式有效性莫衷一是,但诸多文献证实了我国股票市场的效率在不断提高。这就解释了为何只有较少行业的行业因素波动短期内对该行业的行业指数造成了较大冲击。这一结果意味着实体行业与经济周期在历史中显示的稳定关系在证券市场被投资者竞争性套利行为消融,若想从行业轮动现象中获利,实体行业的经营状况变化所能提供的信息有限,只能另辟蹊径。通过对A股市场中行业动量现象的分析和前文的研究结论,本文认为行业轮动现象本质上是一种基于经济周期阶段的行业动量或反转效应。因此,抓住行业轮动的获利机会应从两个方面入手:一、及时准确的识别投资起始点时刻所处的经济周期阶段;二、基于不同经济周期阶段下的行业动量和反转效应的特征,制定合适的动量投资策略。基于以上思考,第五章对经济周期转点的实时识别方法进行了研究。本文认为,经济周期转点的实时识别本质上是一种预测行为,故在研究思路和解决方法上,与第一章皆有不同。经济总量指标的变化是诸多宏观经济因素相互影响、共同作用的最终反映。使用单一总量指标进行转点的实时识别显然会由于丢失太多信息而丧失准确性。因此,将经济周期转点的实时识别过程划分为历史数据的转点识别和转点的实时识别两个部分。在历史数据识别部分,与第一章一致,依然使用BB模型对单一经济总量指标进行二分法的转点识别。在实时识别部分,引入其他重要宏观经济变量,使用历史数据的转点识别结果对LVQ算法进行训练,并使用训练后的算法进行实时识别。经过反复测试对比表明,该实时识别方案在识别精度、识别及时性和识别稳健性方面都优于传统识别方法。第六章设计了一个基于前文研究结论的行业轮动投资策略,并进行了回测。该策略基于经济周期转点实时识别结果,依据经济周期各阶段的行业动量和反转效应特征筛选行业和股票构建基础投资组合。考虑投资风险,使用Black-Litterman模型对基础投资组合进行优化。Black-litterman模型中的投资者观点矩阵通过GJR-GARCH-M模型确定。信心向量则依据经济周期转点实时识别中的分类考察指标设定。在回测过程中,严格界定投资时点已知和未知的数据环境。依据每个月最新公布的宏观经济变量,不断更新经济周期转点识别的实时结果。据此测试该经济周期阶段的行业动量和反转效应特征,进而根据此特征调整投资组合的股票,最后依据BL模型确定最后组合权重。测试的结果表明,在大部分月份里该策略收益皆好于当月大盘指数的收益。本文的研究表明,经济周期对股票市场中的行业轮动现象是存在影响的,但影响的主要中间变量并非是行业因素。虽然经济的周期性波动会引发实体行业的同步或非同步波动,但实体行业的波动对股票市场中行业指数的冲击有限。行业轮动更多的是一种行业动量和反转效应的表现。经济周期与股票市场中的行业指数之间的联系,是通过行业动量和反转效应在不同经济周期阶段的特征变化表现的。本文研究过程中,在经济周期阶段的划分、宏观经济与行业之间的领滞关系以及经济周期转点的实时识别等方面做了一些创新性尝试。但受限与对行业轮动现象概念的理解局限,本文未能对该定义做出更为具体和可量化的改进,而只能沿用的传统定义。这使得本文在行业轮动现象、经济周期和实体行业之间关系的研究只能局限对总体数据的观察,而无法深入到具体“某一个”行业轮动现象的微观层面。该问题既是本文研究的不足之处,也是本文未来研究的重要方向。
论文目录
文章来源
类型: 博士论文
作者: 孟德峰
导师: 李占风
关键词: 经济周期,行业轮动,投资组合,投资策略
来源: 中南财经政法大学
年度: 2019
分类: 基础科学,经济与管理科学
专业: 数学,宏观经济管理与可持续发展,经济体制改革,金融,证券,投资,市场研究与信息
单位: 中南财经政法大学
分类号: F832.51;F124;F224
总页数: 308
文件大小: 5075K
下载量: 146