论文摘要
含有p-Laplacian算子的微分方程边值问题是描述扩散现象的一类拟线性椭圆型微分方程,它出现在数学理论中,在科学技术的各个领域都有着广泛的应用,如气流和海洋运动、人口模型、非线性弹性学和流体动力学等.因此对这个问题的研究不仅具有理论价值,更因其深厚的应用背景而具有实际意义.本文研究p-Laplacian问题正解的存在性,内容分为五章:第一章简单的介绍了p-Laplacian问题的历史背景和研究概况,以及本文的主要工作.第二章介绍了一些基本定义以及本文会用到的基本引理.第三章证明了当非线性项非负(即f(x,z)≥0)时,p-Laplacian问题在超线性情形下正解的存在性.主要通过研究算子的性质、解的凹性和第一特征值的连续性,将边值问题解的存在性转化为算子的不动点存在性进行研究,得到新的结果.第四章首先将f(x,z)≥0推广到了f(x,0)≥0,对f进行了扩张,利用时间算子得到了非负解及正解的存在性.然后又将f(x,0)≥0推广到了f(x,z)∈R,利用一个最大值原理及时间算子的性质得到了正解的存在性.第五章首先总结了本文的主要工作及结论,然后指出了有关本课题今后可以继续研究的方向.在我们的研究中,逐步削弱了对非线性项f的限制,同时克服了算子缺乏线性性质等困难,得到了更大范围内的p-Laplacian问题正解的存在性结果,丰富了这个问题的研究.
论文目录
文章来源
类型: 硕士论文
作者: 李祖艳
导师: 杨光崇
关键词: 问题,正解,存在性,不动点
来源: 成都信息工程大学
年度: 2019
分类: 基础科学
专业: 数学
单位: 成都信息工程大学
分类号: O175.8
DOI: 10.27716/d.cnki.gcdxx.2019.000198
总页数: 51
文件大小: 1338K
下载量: 8
相关论文文献
- [1].Gradient Estimates for p-Laplacian Lichnerowicz Equation on Noncompact Metric Measure Space[J]. Chinese Annals of Mathematics,Series B 2020(03)
- [2].Equivalence Relation between Initial Values and Solutions for Evolution p-Laplacian Equation in Unbounded Space[J]. Communications in Mathematical Research 2020(01)
- [3].Ordering Quasi-Tree Graphs by the Second Largest Signless Laplacian Eigenvalues[J]. Journal of Mathematical Research with Applications 2020(05)
- [4].Existence of Solutions to Nonlinear Schr?dinger Equations Involving N-Laplacian and Potentials Vanishing at Infinity[J]. Acta Mathematica Sinica 2020(10)
- [5].含偶圈图的Laplacian谱刻画[J]. 运筹学学报 2018(04)
- [6].四阶p-Laplacian边值问题正解的存在性(英文)[J]. 数学季刊(英文版) 2018(04)
- [7].The Existence of Semiclassical States for Some P-Laplacian Equation with Critical Exponent[J]. Acta Mathematicae Applicatae Sinica 2017(02)
- [8].Soft Decision Based Gaussian-Laplacian Combination Model for Noisy Speech Enhancement[J]. Chinese Journal of Electronics 2018(04)
- [9].具有奇性的Laplacian型方程周期正解的存在性[J]. 韩山师范学院学报 2016(06)
- [10].Blow-up of p-Laplacian evolution equations with variable source power[J]. Science China(Mathematics) 2017(03)
- [11].Solvability for a Coupled System of Fractional p-Laplacian Differential Equations at Resonance[J]. Communications in Mathematical Research 2017(01)
- [12].The Existence of Nodal Solutions for the Half-Quasilinear p-Laplacian Problems[J]. Journal of Mathematical Research with Applications 2017(02)
- [13].Coiflet solution of strongly nonlinear p-Laplacian equations[J]. Applied Mathematics and Mechanics(English Edition) 2017(07)
- [14].Laplacian Energies of Regular Graph Transformations[J]. Journal of Donghua University(English Edition) 2017(03)
- [15].Existence of Solutions to a p-Laplacian Equation with Integral Initial Condition[J]. Communications in Mathematical Research 2017(04)
- [16].The Signless Laplacian Spectral Characterization of Strongly Connected Bicyclic Digraphs[J]. Journal of Mathematical Research with Applications 2016(01)
- [17].Multiplicity for Nonlinear Elliptic Boundary Value Problems of p-Laplacian Type Without Ambrosetti-Rabinowitz Condition[J]. Acta Mathematicae Applicatae Sinica 2015(01)
- [18].Existence of Solutions for a Four-point Boundary Value Problem with a p(t)-Laplacian[J]. Communications in Mathematical Research 2015(01)
- [19].奇异Φ-Laplacian周期边值问题解的存在性[J]. 山东大学学报(理学版) 2015(08)
- [20].单圈图的最小无号Laplacian谱展[J]. 华南师范大学学报(自然科学版) 2013(04)
- [21].循环图的Laplacian谱展[J]. 数学杂志 2013(06)
- [22].The Normalized Laplacian Spectrum of Pentagonal Graphs and Its Applications[J]. Journal of Mathematical Research with Applications 2019(04)
- [23].Evolutionary p(x)-Laplacian Equation with a Convection Term[J]. Acta Mathematicae Applicatae Sinica 2019(03)
- [24].Existence of Nonnegative Solutions for a Class of Systems Involving Fractional(p,q)-Laplacian Operators[J]. Chinese Annals of Mathematics,Series B 2018(02)
- [25].一类p-Laplacian方程单侧全局区间分歧及应用[J]. 数学物理学报 2018(04)
- [26].Energy and Laplacian of fractal interpolation functions[J]. Applied Mathematics:A Journal of Chinese Universities 2017(02)
- [27].图的Normalized Laplacian多项式系数[J]. 集美大学学报(自然科学版) 2016(01)
- [28].一类具有奇性p-Laplacian-Rayleigh方程的周期正解[J]. 韩山师范学院学报 2016(03)
- [29].Homoclinic Solutions for a Prescribed Mean Curvature Lienard p-Laplacian Equation with a Deviating Argument[J]. Journal of Donghua University(English Edition) 2016(03)
- [30].一类奇性的p-Laplacian-Rayleigh方程的周期正解的存在性[J]. 井冈山大学学报(自然科学版) 2016(04)